آموزش مهارت های کاربردی




جستجو



 



1-5- دفن بهداشتی……………………………. 20

1-5-1-روش های مهندسی دفن بهداشتی…………………. 22

1-6-مرور چند روش مکان یابی محل دفن مواد زائد جامد. 25

1-6-1- روش دراستیک……………………………… 25

1-6-2- روش MPCA ………………………………. 26

1-6-3- روش الک کردن منطقه ای و محلی………………. 27

1-6-4- نتیجه گیری از بررسی روش ها………………… 27

1-7-دستورالعمل ها و ضوابط در مورد مکان یابی محل دفن مواد زائد جامد………………………………………….. 28

1-7-1- سازمان حفاظت محیط زیست ایالات متحده آمریکا   28

1-7-2- معیارها و ضوابط ایالت بریتیش کلمبیا در کشور کانادا    29

1-7-3- معیارها و ضوابط ارائه شده توسط سازمان مدیریت و برنامه ریزی کشور 29

1-7-4- دستورالعمل ارائه شده توسط سازمان حفاظت محیط زیست ایران     30

8-1-تعاریف قانونی و قوانین مربوط به مکان یابی محل دفن پسماند 31

فصل دوم

پیشینه تحقیق……………………………………. 34

2-1- سوابق داخلی……………………………….. 34

2-2- منابع خارجی:………………………………. 40

 فصل سوم

3-1-معرفی منطقه مورد مطالعه 46

3-1-1- موقعیت شهرستان کرج 46

3-1-2- وضعیت آب و هوایی شهرستان کرج 46

‌3-1-3- ویژگی های جمعیتی شهرستان کرج 46

3-1-4- تعیین منطقه مورد مطالعه 47

3-2-مواد تحقیق 47

3-2-1- سخت افزار 49

3-2-2- نرم افزار 49

3-2-3- داده 50

پایان نامه

 

3-2-3-1- کاربری اراضی و پوشش زمین 50

3-2-3-2- نقشه های رقومی توپوگرافی 1:50000 50

3-2-3-3- نقشه زمین شناسی 51

3-2-3-4- داده های هواشناسی 51

3-2-3-5- مراکز تاریخی و گردشگری 52

3-2-3-6- عمق آب زیرزمینی 52

3-2-3-7- نقشه خاکشناسی 52

3-2-3-8- مدل رقومی زمین( ده متری) 53

3-2-3-9- تصویر ماهواره ای IRS 53

3-2-3-10- زیستگاه های حساس 53

3-3- استانداردسازی فازی 53

3-3-1- استانداردسازی نقشه معیارها ( مشخصه ها) 53

3-3-2- استانداردسازی مشخصه ها با منطق فازی 54

3-4- مکان یابی محل دفن توسط فرایند تحلیل سلسله مراتبی 55

3-4-1- چارچوب مفهومی فرایند تحلیل سلسله مراتبی (AHP) 55

3-4-2- ایجاد یک ساختار سلسله مراتب 55

3-4-3- مقایسه عناصر تصمیم گیری به صورت مقایسه زوجی 55

3-4-4- محاسبه وزن های اهمیت نسبی معیارها 56

3-4-5- بررسی سازگاری در قضاوت ها 57

3-4-7- روش مقایسه زوجی 58

3-5- وزندهی افزودنی ساده 62

3-6- تعیین حداقل مساحت مورد نیاز برای محل دفن مواد زائد جامد 64

3-6-1- میزان رشد جمعیت 64

3-6-2- تولید سالیانه مواد زائد جامد 64

3-6-3- ارتفاع و شکل محل دفن 65

فصل چهارم

1-4- تدوین معیارها 67

4-1-1- زیستگاه های حساس 67

4-1-2- کاربری و پوشش زمین 67

4-1-3- فاصله از فرودگاه 68

4-1-4- فاصله از قنات ها، چاه ها و چشمه ها 68

4-1-5- فاصله از منابع آب سطحی 68

4-1-6- فاصله از سطح آب زیرزمینی 69

4-1-7- فاصله از شبکه راه ها و راه آهن 69

4-1-8- فاصله از سکونتگاه ها 70

4-1-9- فاصله از خطوط انتقال نیرو 70

4-1-10- فاصله از صنایع و معادن 70

4-1-11- فاصله از مراکز تاریخی و گردشگری 71

یک مطلب دیگر :

 

4-1-12- فاصله گسل ها 71

4-1-13- آب و هوا 71

4-1-14- سیل خیزی با دوره بازگشت یکصد ساله 72

4-1-15- ویژگی های خاک 72

4-1-16- شیب زمین 73

4-1-17- قابلیت دید 74

4-1-18- جمع بندی معیارها در مکان یابی محل دفن بهداشتی برای شهر کرج 74

4-2- ساختار سلسله مراتبی 100

4-3- نتایج فرایند مکان یابی محل دفن مواد زائد جامد شهری کرج 101

4-3-1- استانداردسازی 101

4-3-2- وزن نسبی هر یک از مشخصه ها 102

4-3-4- تعیین حداقل مساحت مورد نیاز برای محل دفن مواد زائد جامد 105

4-3-5-نقشه مناسبیت و اولویت بندی محل های دفن 106

فصل پنجم

5-1- تدوین معیارهای در مکان یابی محل دفن بهداشتی برای شهر کرج 110

5-2- مکان یابی و تصمیم گیری چندمعیاره 110

5-2-1- استانداردسازی فازی و سامانه اطلاعات جغرافیایی 111

5-2-2- فرایند تحلیل سلسله مراتبی 112

5-3- مدیریت مواد زائد و دفن بهداشتی 112

5-4- خطاهای احتمالی و منابع آن 114

5-5- نتیجه گیری 115

5-6- پیشنهادها 116

منابع مورد استفاده 118

ضمیمه 123

فهرست جدول ها

جدول 1-1- تفاوت های بین تصمیم گیر ی چند هدفی با تصمیم گیری چندشاخصه 6

جدول 1-2-جدول مقایسه مراحل روش مبتنی بر مقدار و روش مبتنی بر گزینه 9

جدول1-3- مشخصات مرکز دفن باغستان 24

جدول 1-4- مشخصات مرکز دفن حلقه دره 24

جدول 1-5- وزن هر کدام از هفت معیار در روش دراستیک. 26

جدول 2-1 معیارهای به کار رفته در تحقیقات و بررسی های انجام شده 44

جدول 3-1-  حالات مختلف برای مقایسه زوجی و مقادیر عددی آن 57

جدول 3-2- ماتریس مقایسه زوجی 59

جدول 3-3- انجام مراحل سه گانه برای دست آوردن وزن نسبی برای مثال ذکر شده 60

جدول 3-4- محاسبات مربوط به مرحله اول و دوم برای محاسبه نرخ سازگاری 60

جدول 3-5- رابطه بین تعداد معیارها و شاخص تصادفی بودن 61

جدول 4-1- درصد فراوانی باد در ایستگاه های هواشناسی کرج و کشاورزی کرج 86

جدول 4-2- استاندارد سازی زیر معیارهای فاصله و حریم ها 101

جدول 4-3- استاندارد سازی معیارهای ویژگی های فیزیکی سرزمین، کاربری اراضی، قابلیت دید و زیستگاه های حساس 102

جدول 4-4- وزن نسبی معیارهای اصلی و نرخ سازگاری مقایسه زوجی برای مکان یابی محل دفن پسماند 103

جدول 4-5- وزن نسبی زیر معیارهای ویژگیهای فیزیکی سرزمین و نرخ سازگاری مقایسه زوجی 103

جدول 4-6- وزن نسبی زیر معیارهای قابلیت دید 103

جدول 4-7- وزن نسبی زیر معیارهای فاصله و حریم ها و نرخ سازگاری مقایسه دوطرفه 104

جدول 4-8- وزن نسبی کاربری ها و نرخ سازگاری مقایسه زوجی 104

جدول 4-9- مساحت و امتیاز کسب شده توسط هر یک از مکان های حاصل از فرایند تحلیل سلسله مراتب 106

فهرست شکل ها

شکل 1-1- ورودی و خروجی در تجزیه و تحلیل تصمیم گیری چند معیاره مکانی 8

شکل 1-2 – چارچوب تجزیه و تحلیل تصمیم گیری چندمعیاره مکانی. 9

شکل1-3- سلسله مراتب مربوط به نمونه ای از مکان یابی 13

شکل 1-4- سلسله مراتب مولفه های مدیریت مواد زائد جامد 17

شکل 1-5- روش دفن سطحی 22

شکل1-6- روش دفن سراشیبی 23

شکل1-7- روش دفن ترانشه ای 23

شکل 3-1- موقعیت منطقه مورد مطالعه 48

شکل4-1- نقشه کاربری های موجود و پوشش زمین در محدوده مورد مطالعه 75

شکل 4-2- نقشه دشت های سیلابی در محدوده مورد مطالعه 76

شکل 4-3- نقشه فرودگاه، راه ها و سکونتگاه ها در محدوده مورد مطالعه 77

شکل 4-4- نقشه پراکنش قنات ها، چاه ها و چشمه ها در محدوده مورد مطالعه 78

شکل 4-5- نقشه منابع آب های سطحی در محدوده مورد مطالعه 79

موضوعات: بدون موضوع  لینک ثابت
[پنجشنبه 1399-08-01] [ 11:06:00 ق.ظ ]




3-5-7- آزمون اندازه گیری درصد ژل(Gel content). 56
فصل چهارم : نتیجه گیری و پیشنهادات… 58
4-1- نتیجه گیری.. 58
4-2- پیشنهادات… 61

پایان نامه

 

منابع 62
فهرست اشکال
شکل 2-1 ساختار خاک رس مونت موریلونیت… 13
شکل 2-2ریز ساختار مونت موریلونیت 14
شکل 2-3  تصویری از اصلاح لایه­های خاک رس توسط کاتیون­های آلی.. 16
شکل 2-4  مدل­های رشد زنجیره­های آلکیلی، a: زنجیره­های کوتاه، b: زنجیره های متوسط، c : زنجیره­های بلند   17
شکل2-5   a : واکنش هیدرولیز.b :واکنش تراکمی.. 18
شکل 2-6  انواع ساختار­های نانوکامپوزیت­ پلیمر / خاک رس، a : ساختار لخته ای، b: ساختار میان لایه ای، c: ساختار ورقه ورقه ای بانظم ، d: ساختار ورقه ورقه ای بی نظم.. 20
شکل 2-7  نفوذ زنجیره­های پلیمر درون صفحات خاک رس به روش محلولی.. 22
شكل2-8  شمایی ازتهیه نانوکامپوزیت به روش لاتکس…. 22

یک مطلب دیگر :

 

شكل 2-9  شمایی از تهیه نانوکامپوزیت­ به روش مذاب زنجیره­های پلیمری.. 23
شكل 2-10  شمایی از تهیه نانوکامپوزیت به روش پلیمریزاسیون درجا 25
شكل 2-11 حالت­های مختلف پراکنش ذرات خاک رس اصلاح شده در ماتریس پلیمری با استفاده از آزمون­های پراش اشعه ایکس و میکروسکوپ الکترونی عبوری.. 26
شكل 2-12 طرحی از پراش اشعه ایکس…. 27
شكل2-13 بهبود خواص سدی نانوکامپوزیت با حضور نانو ذرات خاک رس… 30
شكل 2-14 ساختار مولکولی اصلاح کننده­ها، a : چهاروجهی کوکو آمین ، b : تری متوکسی وینیل سیلان.. 35
شكل 2-15 مراحل اصلاح خاک رس کلوزیت 20A و تهیه نانوکامپوزیت پلیمر / خاک رس… 39
شكل 3-1 ساختار یون­های آمونیومی اصلاح کننده­های خاک رس معدنی.. 47
شكل 3-2 ساختار اصلاح کننده­های سیلانی.. 47
شکل3-3 شمایی از یک قطره نانو کامپوزیت… 50
فهرست جداول
جدول 2-1 ساختار شیمیایی خاک های رس­ اسمکتیت رایج، M :کاتیون تک ظرفیتی ، X :درجه جانشینی کاتیون­های هم ریخت درصفحات هشت وجهی.. 13
جدول 2-2 نتایج آزمون پراش اشعه ایکس]50[. 31
جدول 2-3 نتایج آزمون پراش اشعه ایکس برای خاک رس اولیه و اصلاح شده ونانو کامپوزیت های تهیه شده با آنها]53[. 36
جدول 2-4 نتایج آزمون پراش اشعه ایکس]54[. 37
جدول 2-5  نتایج آزمون پراش اشعه ایکس برای خاک رس اولیه و اصلاح شده و نانو کامپوزیت های تهیه شده]55[. 40
جدول 2-6 نتایج آزمون پراش اشعه ایکس برای خاک رس اولیه و اصلاح شده]56[. 42
جدول 3-1 مشخصات مواد شیمیایی استفاده شده. 45
جدول 3-2 مقادیر مونومر و خاک­های رس یک و دوبار اصلاح شده. 49
جدول 3-3 دستور العمل تهیه  نانوکامپوزیت های NKT و NKD دردرصد های وزنی 1و3.. 51
جدول 3-4 دستورالعمل تهیه نانوکامپوزیت­های تهیه شده با خاک رس دوبار اصلاح شده. 52
جدول 3-5 دستورالعمل تهیه نانوکامپوزیت هایNKTMPS دردرصدهای وزنی مختلف…. 52
جدول 3-6 دستورالعمل تهیه نانوکامپوزیت های تهیه شده به روش اصلاح درجا 53

موضوعات: بدون موضوع  لینک ثابت
 [ 11:05:00 ق.ظ ]




2-1-2-2-دستگاه آنالیز عنصری (CHN) 23

2-1-2-3-دستگاه طیف سنج فروسرخ تبدیل فوریه (FT-IR) 23

2-1-2-4-دستگاه ICP. 23

2-1-2-5-دستگاه میکروسکوپ الکترونی روبشی (SEM) 23

2-1-2-6-دستگاه آنالیز حرارتی (TG/DTA) 23

2-1-3-بررسی اپوکسایش آلکن­ها بوسیله ی سیستم­های کاتالیزوری ناهمگن مولیبدن تثبیت شده بر روی کربن فعال عامل­دار شده 24

2-1-3-1-عامل­دار کردن کربن فعال با گروه کربوکسیلیک اسید. 24

2-1-3-2-عامل­دار کردن کربن فعال با تیونیل کلراید. 24

2-1-3-3-تثبیت لیگاند دی­اتیلن­تری­آمین (dien) بر روی کربن فعال(AC) 25

2-1-3-4-واکنش سالیسیل آلدهید با کربن فعال عامل­دار شده 25

2-1-3-5-تهیه کمپلکس دی­اکسو بیس (استیل استوناتو) مولیبدن MoO2(acac)2 26

2-1-3-6-تهیه کاتالیزگرهای ناهمگن  AC-dien-MoO2(acac) 26

2-1-3-7-تهیه کاتالیزگرهای ناهمگن AC-Schiff-base-MoO2(acac) 27

2-1-4-تهیه اکسنده اوره هیدروژن­پراکسید. 27

2-1-5-اپوکسایش آلکن­ها با ترشیوبوتیل هیدروژن پراکسید با کاتالیزگرAC-dien-MoO2(acac) ……………. 29

2-1-5-1-اثر نوع حلال. 28

2-1-5-2-اثر نوع اکسنده 28

2-1-5-3-اثر زمان. 29

2-1-5-4-اثر مقدار کاتالیزگر. 29

2-1-5-5-اثر مقدار اکسنده 30

2-1-5-6-اثر مقدار حلال. 30

2-1-5-7-اثر دما 30

2-1-5-8-بازیابی کاتالیزگر ناهمگن مولیبدن در اپوکسایش سیکلواکتن.. 31

2-1-5-9-روش کار عمومی برای اپوکسایش آلکن­ها در حضور کاتالیزگر ناهمگن AC-dien-MoO2(acac) 31

2-1-5-10-بررسی کاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac) 31

فصل سوم

3-1-اهمیت و هدف از انجام پژوهش… 33

3-2-شناسایی و بررسی دو کاتالیزگر ناهمگن AC-dien-MoO2(acac) و(AC-Schiff-base-MoO2(acac. 36

3-2-2-آسیله کردن کربن فعال. 36

3-2-3-آمین­دار کردن کربن فعال. 37

3-2-4-کمپلکس کاتالیزگر ناهمگن AC-dien-MoO2(acac) 38

3-2-5-لیگاند باز شیف بر روی بستر کربن فعال. 39

3-2-6-کمپلکس کاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac) 40

3-2-7-بررسی مورفولوژی با میکروسکوپ الکترونی روبشی SEM.. 41

3-2-8-آنالیز عنصری CHN و ICP. 43

3-2-9-آنالیز حرارتی (TG/DTA) 43

3-3-بررسی ویژگی­های کاتالیزوری کاتالیزگرهای ناهمگن تهیه شده و بهینه سازی عوامل موثر در اپوکسایش سیکلواکتن   46

3-3-1-بررسی اثر نوع حلال. 46

3-3-2-بررسی اثر نوع اکسنده 50

3-3-3-بررسی اثر زمان. 52

3-3-4-بررسی اثر مقدار کاتالیزگر. 55

3-3-5-بررسی اثر مقدار اکسنده 57

3-3-6-بررسی اثر مقدار حلال. 60

3-3-7-بررسی اثر دما 62

3-3-8-بررسی بازیابی کاتالیزگرهای ناهمگنAC-dien-MoO2(acac)  و AC-Schiff-base-MoO2(acac) در  اپوکسایش سیکلواکتن   65

3-3-9-بررسی ویژگی های کاتالیزوری کاتالیزگرهای AC-dien-MoO2(acac) و AC-Schiff-base-MoO2(acac) در اپوکسایش آلکن­های دیگر  67

3-3-10-مکانیسم پیشنهادی جهت اپوکسایش سیکلواکتن با کاتالیزگر ناهمگن AC-dien-MoO2(acac) 70

3-4-نتیجه گیری.. 72

3-5-آینده نگری.. 74

پیوست.. 75

منابع: 76

فهرست شکل­ها

شکل 1-1: تصویری از کربن فعال پودری،گرانوله و فیبری و کربن نانوتیوب (به ترتیب از چپ به راست). 6

شکل 1-2: تصویر قطعات کربنی منحنی شکل، شامل حلقه­های پنج ضلعی، شش ضلعی، هفت ضلعی.. 7

پایان نامه

 

شکل 1-3: انواع منافذ در کربن فعال. 8

شکل 1-4: مکانیسم شلدون در اپوکسایش آلکن­ها 10

شکل 1-5: مکانیسم شارپلس در اپوکسایش آلکن­ها 11

شکل 1-6: چرخه کاتالیزوری جابه جا شدن اکسیژن به اولفین­ها با اکسنده ترشیوبوتیل هیدروژن پراکسید و کاتالیزگر مولیبدن  12

شکل 1-7: مراحل آماده سازی کاتالیزگر Mo-APTS-A. 14

شکل 1-8: شمای سنتزی کاتالیزگر L1@ACox-  MnII 15

شکل 1-9: شمای سنتزی کاتالیزگر L2@ACox-  MnII 16

شکل 1-10: مراحل تهیه کاتالیزگرهای [MoO2(acac)@APy-MWCNT] و [MoO2(acac)@DAB-MWCNT]. 17

شکل 1-12: تثبیت کمپلکسی از مس روی سطح کربن فعال اصلاح شده 19

شکل 1-13: تثبیت کمپلکسی از نیکل روی سطح کربن فعال اصلاح شده. 19

شکل2-1: ساختار کمپلکس MoO2 (acac)2 26

شکل  3-1: شمای سنتزی ساختار پیشنهاد شده برای کاتالیزگر  AC-dien-MoO2(acac) 34

شکل 3-2 :شمای سنتزی ساختار پیشنهاد شده برای کاتالیزگر  AC-Schiff-base-MoO2(acac) 35

شکل 3-3 : طیف FT-IR کربن فعال آسیل کلرایددار شده. 37

شکل 3-4 : طیف FT-IR کربن فعال عامل­دار شده با دی­اتیلن تری­آمین. 38

شکل 3-5 : طیف FT-IR کاتالیزگر ناهمگن AC-dien-MoO2(acac). 39

شکل 3-6 : طیف FT-IR مربوط به AC-Schiff-base. 40

شکل 3-7: طیف FT-IR کاتالیزگر ناهمگن (AC-Schiff-base-MoO2(acac. 41

شکل 3-8: SEM کربن فعال با بزرگنمایی­های 50 و100. 42

شکل3-9: SEM کاتالیزگر ناهمگن AC-dien-MoO2(acac) با بزرگنمایی­های 50 و 100. 42

شکل 3-10: نمودار تجزیه حرارتی کربن فعال. 44

شکل 3-11: نمودار تجزیه حرارتی AC-dien-MoO2(acac) 45

شکل 3-12: نمودار تجزیه حرارتی AC-Schiff-base-MoO2(acac) 45

شکل 3-13: طرح کلی اپوکسایش سیکلواکتن با کاتالیزگرهای ناهمگن AC-dien-MoO2(acac) و AC-Schiff-base-MoO2(acac) 46

شکل 3-14: بررسی اثر نوع حلال در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 45 دقیقه با 25 میلی­گرم کاتالیزگر (AC-dien-MoO2(acac. 48

شکل 3-15: بررسی اثر نوع حلال در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 45 دقیقه با 25 میلی­گرم کاتالیزگر ( .AC-Schiff-base-MoO2(acac. 49

شکل 3-16: برررسی اثر نوع اکسنده در واکنش اپوکسایش کاتالیزوری 5 /0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال، در مدت زمان 45 دقیقه با 25 میلی­گرم کاتالیزگر ناهمگن AC-dien-MoO2(acac) 51

شکل 3-17: بررسی اثر نوع اکسنده در واکنش اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال، در مدت زمان 45 دقیقه با 25 میلی­گرم کاتالیزگر ناهمگن (AC-Schiff-base-MoO2(acac. 52

شکل 3-18: بررسی اثر زمان در واکنش اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP با 25 میلی­گرم کاتالیزگر ناهمگن (AC-dien-MoO2(acac. 53

شکل 3-19: بررسی اثر زمان در واکنش اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP با 25 میلی­گرم کاتالیزگر ناهمگن (AC-Schiff-base-MoO2(acac. 54

شکل 3-20: بررسی اثر مقدارکاتالیزگر ناهمگن AC-dien-MoO2(acac) در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 30 دقیقه. 56

یک مطلب دیگر :

 

شکل 3-21: بررسی اثر مقدارکاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac) در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 30 دقیقه. 57

شکل 3-22: بررسی اثر مقدار اکسنده TBHP، در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال با 20 میلی­گرم کاتالیزگر ناهمگن AC-dien-MoO2(acac) طی30 دقیقه. 58

شکل 3-23: بررسی اثر مقدار اکسنده TBHP، در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال با 20 میلی­ گرم کاتالیزگر ناهمگن ( AC-Schiff-base-MoO2(acacطی                 30 دقیقه. 59

شکل 3-24: بررسی اثر مقدار حلال تتراکلریدکربن در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میلی­مول TBHP به­عنوان اکسنده، با 20 میلی­گرم کاتالیزگر ناهمگن AC-dien-MoO2(acac) طی30 دقیقه. 61

شکل 3-25: بررسی اثر مقدار حلال تتراکلریدکربن در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میلی­مول TBHP به­عنوان اکسنده، با 20 میلی­گرم کاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac) طی30 دقیقه. 62

شکل 3-26: بررسی اثر دما در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میلی­مول TBHP به­عنوان اکسنده در 1میلی­لیتر حلال تتراکلریدکربن با 20 میلی­گرم کاتالیزور AC-dien-MoO2(acac) طی30 دقیقه. 63

شکل 3-27: بررسی اثر دما در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میل­مول TBHP به­عنوان اکسنده در 1میلی­لیتر حلال تتراکلریدکربن با 20 میلی­گرم کاتالیزور AC-Schiff-base-MoO2(acac)                     طی30 دقیقه. 64

شکل 3-28: بررسی توانایی کاتالیزگر ناهمگن AC-dien-MoO2(acac) بازیابی شده در اپوکسایش کاتالیزوری 5/0    میلی­مول سیکلواکتن با 12/1 میلی­مول TBHP به عنوان اکسنده در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 66

شکل 3-29: بررسی توانایی کاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac) بازیابی شده در اپوکسایش کاتالیزوری 5/0 میلی مول سیکلواکتن با 12/1 میلی­مول TBHP به عنوان اکسنده در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 67

شکل 3-30: چرخه کاتالیزوری انتقال اکسیژن به سیکلواکتن توسط ترشیوبوتیل هیدروژن پراکسید با کاتالیزگر ناهمگن ACdien-MoO2(acac) 71

فهرست جدول­ها

جدول2-1: مشخصات دستگاه کروماتوگرافی گازی ………………………………………………………………………………………………………23

جدول3-1: بررسی اثر نوع حلال در اپوکسایش 5/0 میلی­مول سیکلو­اکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 45 دقیقه با 25 میلی­گرم کاتالیزگر AC-dien-MoO2(acac)………………….49

جدول3-2: بررسی اثر نوع حلال در اپوکسایش 5/0 میلی مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی مول اکسنده TBHP در دمای جوش حلال طی 45 دقیقه با 25 میلی­گرم کاتالیزگر  .AC-Schiff-base-MoO2(acac) 49

جدول3-3: برررسی اثر نوع اکسنده در واکنش اپوکسایش کاتالیزوری 5 /0 میلی­مول سیکلواکتن در 1 میلی لیتر حلال، در مدت زمان 45 دقیقه با 25 میلی­گرم کاتالیزگر ناهمگن AC-dien-MoO2(acac). 50

جدول3-4: بررسی اثر نوع اکسنده در واکنش اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن در 1 میلی لیتر حلال، در مدت زمان 45 دقیقه با 25 میلی­گرم کاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac). 51

جدول3-5: بررسی اثر زمان در واکنش اپوکسایش کاتالیزوری 5/0 میل­مول سیکلواکتن در 1 میلی لیتر حلال با 4/1 میلی­مول اکسنده TBHP با 25 میلی­گرم کاتالیزگر ناهمگن AC-dien-MoO2(acac). 53

جدول3-6: بررسی اثر زمان در واکنش اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن در 1 میلی لیتر حلال با 4/1 میلی­مول اکسنده TBHP با 25 میلی­گرم کاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac). 54

جدول3-7: بررسی اثر مقدارکاتالیزگر ناهمگن  AC-dien-MoO2(acac) در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 30 دقیقه. 55

جدول3-8: بررسی اثر مقدارکاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac) در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی مول اکسنده TBHP در دمای جوش حلال طی 30 دقیقه. 56

جدول3-9: بررسی اثر مقدار اکسنده TBHP، در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال با 20 میلی گرم کاتالیزگر ناهمگن AC-dien-MoO2(acac) طی30 دقیقه. 58

جدول3-10: بررسی اثر مقدار اکسنده TBHP، در اپوکسایش 5/0 میلی مول سیکلواکتن در 1 میلی لیتر حلال تتراکلریدکربن در دمای جوش حلال با 20 میلی­گرم کاتالیزگر ناهمگن AC-dien-MoO2(acac) طی30 دقیقه. 59

جدول3-11: بررسی اثر مقدار حلال تتراکلرید کربن در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میلی­مول TBHP به عنوان اکسنده، با 20 میلی­گرم کاتالیزگر ناهمگن AC-dien-MoO2(acac) طی30 دقیقه. 61

جدول3-12: بررسی اثر مقدار حلال تتراکلرید کربن در اپوکسایش کاتالیزوری 5/0 میلی مول سیکلواکتن با 12/1 میلی مول TBHP به عنوان اکسنده، با 20 میلی­گرم کاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac) طی30 دقیقه. 61

جدول3-13: بررسی اثر دما در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میلی­مول  TBHP به عنوان اکسنده در 1میلی­ لیتر حلال تتراکلریدکربن با 20 میلی­گرم کاتالیزور AC-dien-MoO2(acac) طی30 دقیقه. 63

جدول3-14: بررسی اثر دما در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میلی­مول TBHP به­عنوان اکسنده در 1میلی­لیتر حلال تتراکلریدکربن با 20 میلی­گرم کاتالیزور AC-Schiff-base-MoO2(acac) طی30           دقیقه. 64

جدول3-15: بررسی توانایی کاتالیزگر ناهمگن AC-dien-MoO2(acac) بازیابی شده در اپوکسایش کاتالیزوری 5/0  میلی­مول سیکلواکتن با 12/1 میلیمول TBHP به عنوان اکسنده در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 65

جدول3-16: بررسی توانایی کاتالیزگر ناهمگن AC-Schiff-base-MoO2(acac) بازیابی شده در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میلی مول  TBHPبه عنوان اکسنده در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 66

جدول3-17: بررسی ویژگی کاتالیزوری کاتالیزگر AC-dien-MoO2(acac) در اپوکسایش 5/0میلی­مول از سایر آلکن­ها با 12/1 میلی­مول TBHP به­عنوان اکسنده، در 1 میلی لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 68

جدول 3-18: بررسی ویژگی کاتالیزوری کاتالیزگر AC-Schiff-base-MoO2(acac) در اپوکسایش 5/0میلی مول از سایر آلکن ها با 12/1 میلی­مول TBHP به­عنوان اکسنده، در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 69

جدول 3-19: مقایسه کاتالیزگرهای AC-dien-MoO2(acac) و AC-Schiff-base-MoO2(acac) با سیستم­های کاتالیزوری مشابه  73

موضوعات: بدون موضوع  لینک ثابت
 [ 11:03:00 ق.ظ ]




1-6 اثر بر سلامت …………………………………………………………………………………………………………………………………………………9

1-7 متابولیسم …………………………………………………………………………………………………………………………………………………….10

1-8 استراتژی های تکنولوژیکی به منظور کاهش فوران ……………………………………………………………………………………………11

1-9 استراتژیکی پیشگیری …………………………………………………………………………………………………………………………………….12

1-9-1 تغییر در پارامتر های فرآیند ………………………………………………………………………………………………………………………..12

1-9-2 تغییر در فرمولاسیون …………………………………………………………………………………………………………………………………13

1-9-3 حذف یا جایگزینی اجزا ……………………………………………………………………………………………………………………………13

1-9-4 افزودن ترکیبات ………………………………………………………………………………………………………………………………………..13

1-10 استراتژی های پس از فراوری……………………………………………………………………………………………………………………….13

1-10-1 استراتژی های حذف ………………………………………………………………………………………………………………………………14

1-10-2 پختن در ظروف در باز ……………………………………………………………………………………………………………………………14

1-10-3 حذف فیزیکی ………………………………………………………………………………………………………………………………………..14

1-10-4اشعه یونیزه کننده …………………………………………………………………………………………………………………………………….15

1-11 گزینه های کنترل…………………………………………………………………………………………………………………………………………15

1-12 قانون گذاری………………………………………………………………………………………………………………………………………………16

1-13 مروری بر تحقیقات گذشته …………………………………………………………………………………………………………………………16

فصل دوم :ریز استخراج فاز جامد با استفاده از جاذب پلیمری قالب مولکولی   ………………………………………………. .19

مقدمه   …………………………………………………………………………………………………………………………………………………………….. 20

2-1   استخراج    ……………………………………………………………………………………………………………………………………………… 20

2-1-1 خصوصیات حلال    ……………………………………………………………………………………………………………………………….. 21

2-2 استخراج با حلال    …………………………………………………………………………………………………………………………………….. 22

2-3 استخراج با فاز جامد(SPE)    …………………………………………………………………………………………………………………….. 22

پایان نامه

 

2-4 ریز استخراج با فاز جامد(SPME)    …………………………………………………………………………………………………………… 23

2-4-1 مزایای میکرو استخراج با فاز جامد    ……………………………………………………………………………………………………….. 24

2-4-2 پارامترهای بهینه سازی کردن میکرو استخراج با فاز جامد    ………………………………………………………………………… 25

2-4-3 عوامل موثر بر مقدار ماده ی جذب شده    ………………………………………………………………………………………………… 26

2-4-4 انواع روش های نمونه برداری    ………………………………………………………………………………………………………………. 26

2-4-5 انتخاب روش استخراج    ………………………………………………………………………………………………………………………… 27

2-4-6 معایب میکرو استخراج با فاز جامد   …………………………………………………………………………………………………………. 27

2-4-7 انواع فایبرها    ……………………………………………………………………………………………………………………………………….. 27

2-4-8 انواع روش های هم زدن در میکرو استخراج با فاز جامد    ………………………………………………………………………….. 29

2-4-9 عوامل موثر بر میکرو استخراج با فاز جامد     ……………………………………………………………………………………………. 30

2-4-10 کاربردهای میکرو استخراج با فاز جامد     ………………………………………………………………………………………………. 30

2-5 سرنگ SPME      ……………………………………………………………………………………………………………………………………. 31

2-6 مروری بر تحقیقات گذشته SPME     ………………………………………………………………………………………………………… 32

2-7 انواع فازهای جامد    ………………………………………………………………………………………………………………………………….. 34

2-7-1 کربن(گرافیت)    ……………………………………………………………………………………………………………………………………. 35

2-7-2 سیلیکاژل    …………………………………………………………………………………………………………………………………………… 35

2-7-3 جاذب پلیمری    ……………………………………………………………………………………………………………………………………. 36

2-8 آشنایی با پلیمر و پایمریزاسیون      ………………………………………………………………………………………………………………. 36

2-8-1 پلیمر چیست؟     …………………………………………………………………………………………………………………………………… 36

2-8-2 انواع پلیمر ساختاری    ……………………………………………………………………………………………………………………………. 36

2-8-3 بسپارها از نظر اثر پذیری در برابر حرارت به دو دسته تقسیم می شوند   ……………………………………………………….. 36

2-8-4 انواع پلیمرها بر اساس منبع تهیه    ……………………………………………………………………………………………………………. 37

2-8-5 انواع روش های پلیمریزاسیون    ………………………………………………………………………………………………………………. 37

2-8-5-1 پلیمریزاسیون افزایشی   ……………………………………………………………………………………………………………………….. 37

2-8-5-2 پلیمریزاسیون تراکمی    ………………………………………………………………………………………………………………………. 37

2-9 پلیمرهای قالب مولکولی    ………………………………………………………………………………………………………………………….. 37

2-9-1 مزایای پلیمرهای قالب مولکولی  ………………………………………………………………………………………………………………. 39

2-9-2 عوامل سازنده یک پلیمر قالب مولکولی    …………………………………………………………………………………………………. 39

2-9-2-1 مونومر عاملی    …………………………………………………………………………………………………………………………………. 41

2-9-2-2 مولکول هدف(قالب)    ……………………………………………………………………………………………………………………….. 43

2-9-2-3 عامل اتصال عرضی     ………………………………………………………………………………………………………………………… 43

2-9-2-4 حلال     ……………………………………………………………………………………………………………………………………………. 44

2-9-2-5 آغازگر     ………………………………………………………………………………………………………………………………………….. 45

2-9-3 انواع پلیمرهای قالب مولکولی     ……………………………………………………………………………………………………………… 46

2-10 پلیمر قالب مولکولی کووالانسی    ………………………………………………………………………………………………………………. 46

2-10-1 مزایای پلیمرهای قالب مولکولی کووالانسی    ………………………………………………………………………………………….. 47

2-10-2 معایب  پلیمرهای قالب مولکولی کووالانسی    …………………………………………………………………………………………. 47

2-11 پلیمرهای قالب مولکولی نیمه کووالانسی     ………………………………………………………………………………………………… 47

یک مطلب دیگر :

 

2-12 پلیمرهای قالب مولکولی غیر کووالانسی      ………………………………………………………………………………………………… 48

2-12-1 مراحل سنتز پلیمر قالب مولکولی      ……………………………………………………………………………………………………… 48

2-12-2 دلایلی که از روش غیر کووالانسی بیشتر استفاده می شود     ……………………………………………………………………… 48

2-13 روش های تهیه پلیمر قالب مولکولی    ……………………………………………………………………………………………………….. 48

2-13-1 پلیمریزاسیون توده ای    ………………………………………………………………………………………………………………………… 49

2-13-2  روش پلیمریزاسیون رسوبی    ……………………………………………………………………………………………………………….. 49

2-13-3 پلیمریزاسیون با تورم چند مرحله ای    ……………………………………………………………………………………………………. 49

2-13-4 پلیمریزاسیون سوسپانسیون    …………………………………………………………………………………………………………………. 50

2-13-5 روش پیوند زنی    ………………………………………………………………………………………………………………………………… 50

2-14 کاربرد پلیمرهای قالب مولکولی    ………………………………………………………………………………………………………………. 50

2-14-1  کاربرد پلیمرهای قالب مولکولی برای ریز استخراج با فاز جامد (SPME)    ……………………………………………… 50

2-15-1 کاربرد پلیمرهای قالب مولکولی در حسگرها    ………………………………………………………………………………………… 51

2-15-2 کاربرد پلیمرهای قالب مولکولی در غشاء    ……………………………………………………………………………………………… 51

2-15-3 کاربرد پلیمرهای قالب مولکولی در کاتالیزگرها    ……………………………………………………………………………………… 52

2-15-4 کاربرد پلیمرهای قالب مولکولی در کروماتوگرافی    …………………………………………………………………………………. 52

فصل سوم : مطالعات تجربی      ……………………………………………………………………………………………………………… 53

3-1 مواد مصرفی    …………………………………………………………………………………………………………………………………………… 54

3-2 دستگاه وری    …………………………………………………………………………………………………………………………………………… 54

3-2-1 التراسونیک     ……………………………………………………………………………………………………………………………………….. 54

3-2-2 pH متر     ……………………………………………………………………………………………………………………………………………. 54

3-2-3 بن ماری     …………………………………………………………………………………………………………………………………………… 54

3-2-4 کروماتوگرافی گازی    GC …………………………………………………………………………………………………………………….. 54

3-2-5 آون     ………………………………………………………………………………………………………………………………………………….. 55

3-2-6 همزن مغناطیسی(هیتر)     ……………………………………………………………………………………………………………………….. 55

3-2-7 سرنگ SPME     …………………………………………………………………………………………………………………………………. 55

3-2-8 دستگاه (IR)      ……………………………………………………………………………………………………………………………………. 56

3-3 تهیه پلیمر قالب مولکولی    …………………………………………………………………………………………………………………………. 56

3-3-1 انتخاب عوامل    …………………………………………………………………………………………………………………………………….. 56

3-3-1-1 آنالیت یا نمونه     ………………………………………………………………………………………………………………………………. 56

3-3-1-2 مونومر عاملی مناسب     ……………………………………………………………………………………………………………………… 56

3-3-1-3 عامل اتصال دهنده عرضی     ………………………………………………………………………………………………………………. 57

3-3-1-4 حلال مناسب    ………………………………………………………………………………………………………………………………….. 58

3-3-1-5 آغازگر      ………………………………………………………………………………………………………………………………………… 58

3-3-2 روش سنتز پلیمر قالب مولکولی    ……………………………………………………………………………………………………………. 59

3-4 بهینه سازی شرایط جذب فوران در روش ریز استخراج با پلیمر قالب مولکولی   ………………………………………………… 60

3-4-1 تعیین ماکزیمم طول موج جذب    ……………………………………………………………………………………………………………. 60

3-4-2 بررسی اثر نمک    ………………………………………………………………………………………………………………………………….  60

3-4-3 بررسی اثر زمان     …………………………………………………………………………………………………………………………………  61

3-4-4 تاثیر pH محلول بر جذب پلیمر      ………………………………………………………………………………………………………..  62

3-4-5 تاثیر دما بر جذب پلیمر     ………………………………………………………………………………………………………………………  63

3-4-6 شناسایی فوران توسط دستگاه GC   ………………………………………………………………………………………………………..  63

3-4-6-1 برنامه دمایی دستگاه GC برای فوران ها     …………………………………………………………………………………………… 63

فصل چهارم : بحث و نتیجه گیری     ………………………………………………………………………………………………………… 65

4-1 سنتز پلیمر قالب مولکولی و پلیمر شاهد     ……………………………………………………………………………………………………. 66

4-1-1 پلیمریزاسیون پلیمر قالب مولکولی     ……………………………………………………………………………………………………….. 66

4-1-2 مکانیسم سنتز پلیمر قالب مولکولی    ………………………………………………………………………………………………………….68

4-1-3 طیف های FT-IR از پلیمر MIP و NIP   ……………………………………………………………………………………………….68

4-2 بهینه سازی شرایط جذب فوران توسط پلیمر قالب مولکولی    …………………………………………………………………………. 70

4-2-1 اثر نمک بر جذب فوران    ………………………………………………………………………………………………………………………. 70

4-2-2 اثر زمان بر جذب فوران    ………………………………………………………………………………………………………………………. 71

4-2-3 اثر دما بر جذب فوران    …………………………………………………………………………………………………………………………. 72

4-2-4 اثر pH محلول بر جذب پلیمر   ………………………………………………………………………………………………………………. 73

4-2-5 شناسایی فوران توسط دستگاه GC   ………………………………………………………………………………………………………… 74

خلاصه   …………………………………………………………………………………………………………………………………………………………… 75

پیوست………………………………………………………………………………………………………………………………………………………….. 76

پیوست 1؛ طیف FT-IR از NIP، در محدوده 400-4000 cm-1 به روش قرص KBr   ……………………………………….. 76

پیوست 2؛ طیف FT-IR از MIP، در محدوده 400-4000 cm-1 به روش قرص KBr    ………………………………………..  77

پیوست 3؛ طیف GC برای محلول 10 PPM فوران    ………………………………………………………………………………………….. 78

پیوست 4؛ طیف GC برای محلول 40 PPM فوران    ………………………………………………………………………………………….. 79

موضوعات: بدون موضوع  لینک ثابت
 [ 11:02:00 ق.ظ ]




3-کارهای عملی……61
3-1مواد.. 61
3-1-1-کیتوسان..  61
3-1-2-گرافن………..62
3-1-3-تری اتیلن تترامین.. 62
3-1-4-پلی اتیلن گلایکول. 62
3-1-5-فرمالدهید. 62
3-1-6-اتیل استات… 62
3-1-7-اسید سولفوریک…. 62
3-1-8-اسید نیتریک…. 63
3-1-9-سود سوزآور. 63
3-1-10-نمک کادمیوم نیترات… 63
3-1-11-تیونیل کلراید. 63
3-1-12-سدیم………..63
3-1-13-تتراهیدروفوران. 63
3-1-14-دی متیل فرمامید. 64
3-1-15-بنزوفنون. 64
3-2-تجهیزات…. 64
3-2-1-رفلاکس… 64
3-2-2-فیلتریزاسیون خلا.. 64
3-2-3-همزن لرزان. 64
3-2-4-دستگاه pH  متر. 65
3-3-نمونه‌سازی.. 65
3-3-1-اکسید گرافن.. 65
3-3-2-آسیلاسیون نانو گرافن.. 66
3-3-3-عامل دار کردن نانوگرافن.. 66

پایان نامه

 

3-3-4-دانه کیتوسان. 67
3-3-5-نانوکامپوزیت دانه کیتوسان. 67
3-3-6-خشک کردن دانه ها 68
3-3-7-روش ساخت محلول یونی کادمیوم. 68
3-3-8-روش خشک کردن دی متیل فرمامید. 68
3-3-9-روش خشک کردن تتراهیدروفوران. 69
3-4-تعیین مشخصات… 71
3-4-1-دستگاه طیف‌سنجی زیر قرمز تبدیل فوریه. 71
3-4-2-تجزیه وزن سنجی گرمایی (TGA) 71
3-4-3-ریزبین الکترونی روبشی (SEM) 72
3-4-4- سیستم آنالیز عنصری EDX.. 74
3-4-5-دستگاه طیف سنجی جذب اتمی شعله (FAAS) 74
4-نتیجه‌گیری و بحث………..76
4-1-تعیین مشخصات گرافن عامل دار شده. 76
4-1-1-طیف‌سنجی زیر قرمز تبدیل فوریه. 76
4-1-2-تجزیه وزن سنجی گرمایی.. 78
4-1-3-ریخت‌شناسی نانو ذرات با استفاده از ریزبین الکترونی روبشی……..79
4-1-4-بررسی تخلخل نانوکامپوزیت ها 82
4-2-بررسی اثر تورم و جذب آب نانو کامپوزیت‌های کیتوسان. 85
4-3-جذب یون کادمیوم از محلول‌های آبی توسط نانوکامپوزیت هیدروژل های کیتوسان گرافن عامل دار شده……..86
4-3-1-به دست آوردن میزان جاذب بهینه جهت جذب یون کادمیوم. 86
4-3-2-به دست آوردن میزان pH بهینه در جذب یون کادمیوم. 88
4-3-3-به دست آوردن زمان تماس بهینه جهت جذب یون کادمیوم. 90
4-3-4-به دست آوردن میزان غلظت یون کادمیوم جهت جذب بهینه یون کادمیوم. 91
5-نتیجه‌گیری و پیشنهاد‌ها………93
مراجع………….95
فهرست شکل ها
شکل ‏2‑1: ساختار واحدهای منومری سلولز، کیتین و کیتوسان[2] 6
شکل ‏2‑2 ساختار شیمیایی  پلیمرهای کیتین و کیتوسان[2] 7

یک مطلب دیگر :

 

شکل ‏2‑3 جهت‌گیری زنجیره ها در گاما، بتا و آلفا کیتین[2] 8
شکل ‏2‑4 ساختار لانه‌زنبوری گرافن که عنصر مادر و تشکیل دهنده مواد دیگر همچون گرافیت و کربن و فولرن و کربن نانولوله می باشد[4] 10
شکل ‏2‑5 ایجاد اتصالات عرضی و بررسی سازوکار ساختار پس از چند اصلاح: 14
شکل ‏2‑6 به دست آوردن دانه های کیتوسان در حمام سدیم هیدروکساید[16] 15
شکل ‏2‑7 تصاویر میکروسکوپ الکترونی روبشی با بزرگنمایی به ترتیب 30 و 500 برابر[16] 16
شکل ‏2‑8 آماده سازی نانو کامپوزیت‌های مغناطیسی کیتوسان[17] 16
شکل ‏2‑9 تغییرات میزان جذب یون آلومینیوم با استفاده از کیتوسان با تغییر pH [18] 17
شکل ‏2‑10 تغییرات میزان جذب یون مس و سرب با استفاده از هیدروژل نانو کامپوزیت‌های کیتوسان/گرافن اکساید با گذشت زمان[20] 18
شکل ‏2‑11 تغییرات میزان جذب یون مس و سرب با استفاده از هیدروژل نانو کامپوزیت‌های کیتوسان/گرافن اکساید با تغییر ترکیب درصد گرافن اکساید[20] 19
شکل ‏2‑12 جذب رنگ های آنیونیEosin Y(سمت چپ) و کاتیونی متیلن بلو(سمت راست) توسط هیدروژل نانو کامپوزیت‌های کیتوسان/گرافن اکساید[20] 19
شکل ‏2‑13 تصویر جدا شدن نانوکامپوزیت مغناطیسی از محلول یونی با استفاده از آهنربا(سمت راست) و تصویر  میکروسکوپ الکترونی عبوری(TEM)  از کامپوزیت Fe3O4-RGO (سمت چپ)[21]. 20
شکل ‏2‑14 تصویر نمودار جذب انتخابی جیوه از محلول آبی با استفاده از کامپوزیت پلی پیرول/گرافن اکساید احیا شده(سمت راست) و تصویر میکروسکوپ الکترونی عبوری(TEM)  از این کامپوزیت (سمت چپ)[22]. 21
شکل ‏2‑15 ثبات ایجاد شده در نانوکامپوزیت مونولیت به دلیل استفاده از گرافن اکساید و سایکلودکسترین در مقایسه با مونولیت خالص با گذشت زمان مغروق بودن در آب[23]. 22
شکل ‏2‑16 میزان جذب یون فسفات با استفاده از گرافن در دماهای متفاوت[25]. 23
شکل ‏2‑17 میزان جذب یون فسفات با استفاده از گرافن در غلظت های متفاوت یون فسفات[25]. 23
شکل ‏2‑18 جذب سطحی با استفاده از سامانه غیر پیوسته[26]. 27
شکل ‏2‑19 جذب سطحی با استفاده از سامانه‌های بستر ثابت[26]. 28
شکل ‏2‑20 جذب سطحی با استفاده از سامانه بستر ضربه زده[26]. 28
شکل ‏2‑21 جذب سطحی با استفاده از سامانه بستر متحرک حالت پایا[26]. 29
شکل ‏2‑22 جذب سطحی گاز حامل با استفاده از سامانه‌های بستر سیال شده[26]. 30
شکل ‏2‑23 به دست آوردن گرافن با منشأ گرافیتی[47]. 34
شکل ‏2‑24  احیا گرافن اکساید با استفاده از هیدرات هیدرازین و رسیدن به گرافن[68] 37
شکل ‏2‑25 تغییر رنگ احیا گرافن اکساید(سمت چپ) و تبدیل آن به گرافن(سمت راست)[74]. 37
شکل ‏2‑26 تغییر حجم  0.5 گرافن اکساید در اثر گرمادهی سریع تا 1000 و تبدیل شدن به 75 گرافن[47]. 38
شکل ‏2‑27 تصویر میکروسکوپ الکترونی عبوری(TEM) از گرافن اکساید احیا شده به روش گرمایی که به شکل یک کاغذ مچاله شده در آمده است[76]. 39
شکل ‏2‑28 به دست آوردن ورق های گرافن عامل دار شده از گرافیت: (الف) اکسید کردن گرافن (ب) عامل دار کردن گرافن اکساید با آلکیل آمید و (ج) احیای گرافن عامل دار شده[85] 45
شکل ‏2‑29 عامل دار کردن گرافن احاطه شده توسط سورفکتانت SDBS با نمک دیازونیوم توسط واکنش جانشینی الکتروفیلی[70]. 46
شکل ‏2‑30 واکنش گروه‌های اکسیژنی کربوکسیل(سمت راست) و هیدروکسیل(سمت چپ) روی سطح گرافن اکساید با ایزوسیانات و تولید گرافن عامل دار شده[88]. 47
شکل ‏2‑31 عامل دار کردن گرافن اکساید با اکتادسیل آمین و استفاده از تیونیل کلراید[64]. 48
شکل ‏2‑32 تولید گرافن اکساید از گرافیت(بالا) و گرفت شدن زنجیره های کیتوسان بر روی سطح گرافن اکساید(پایین)[91]. 49
شکل ‏2‑33 گرفت کردن 1و3- دی پلار سایکولادیشن دیازنیوم ییلد بر روی سطح گرافن[93]. 50
شکل ‏2‑34 اصلاح گرافن با توجه به تعامل π-π بین اوربیتال π از گرافن و پلی ایزوپروپیل آکریلامید اختتام یافته با پیرن[100]. 53
شکل ‏2‑35 طرح‌واره‌ای از اصلاح گرافن با PPESO3-[101]. 54
شکل ‏2‑36 تثبیت گرافن با یون‌های K+. 55
شکل ‏2‑37 محیط آزمایش(سمت چپ) و لایه برداری از آند گرافیت(سمت راست)[57]. 58
شکل ‏3‑1 سامانه خشک کردن دی متیل فرمامید. 69
شکل ‏3‑2سامانه خشک کردن تتراهیدروفوران. 71
شکل ‏3‑3 دستگاه TGA.. 72
شکل ‏3‑4 دستگاه ریزبین الکترونی روبشی و دستگاه پوشش دهی سطح نمونه‌ها به منظور ایجاد هدایت الکتریکی. 73
شکل ‏3‑5 طیف مرجع آزمون EDX.. 74
شکل ‏3‑6 دستگاه جذب اتمی Perkin-Elmer مدلAanalyst 100. 75
شکل ‏4‑1 طیف زیر قرمز تبدیل فوریه نمونه‌ها 78
‏4‑2 دمانگاشت نانو ذرات گرافن خالص و اکسیدشده و  عامل دار شده. 79
شکل ‏4‑3 ریزنگار میکروسکوپ الکترونی روبشی از (a نانو ذرات گرافن و (b نانو ذرات گرافن اکسیدشده و (c نانو ذرات گرافن عامل دار شده با تری اتیلن تترامین.. 80
شکل ‏4‑4 تصاویر EDX میکروسکوپ الکترونی روبشی از یک لایه گرافن عامل دار شده با تری اتیلن تترامین (a توزیع گروه‌های عاملی اکسیژن دار(سبز) و نیتروژن دار(قرمز)  (b توزیع گروه‌های عاملی اکسیژن دار (c توزیع گروه‌های عاملی نیتروژن دار (d  نمودار نشان‌دهنده درصد گروه‌های کربنی، اکسیژنی و نیتروژنی.. 82
شکل ‏4‑5 ریزنگار میکروسکوپ الکترونی روبشی از  دانه کیتوسان با بزرگنمایی 70 برابر (a بدون نانو ذرات گرافن عامل دار شده  (b دارای 1% وزنی گرافن عاملدارشده (c دارای 2% وزنی گرافن عامل دار شده و (d دارای 5% وزنی گرافن عامل دار شده. 84
شکل ‏4‑6  ریزنگار میکروسکوپ الکترونی روبشی از  دانه کیتوسان با بزرگنمایی 200برابر (a بدون نانو ذرات گرافن عامل دار شده  (b دارای 1% وزنی گرافن عاملدارشده (c دارای 2% وزنی گرافن عامل دار شده و (d دارای 5% وزنی گرافن عامل دار شده. 84
شکل‏4‑7 تغییرات میزان جذب یون کادمیوم در حضور درصدهای مختلف نانو ذرات عامل دار شده و به دست آوردن میزان بهینه جاذب در pH برابر با 5 و مدت زمان 1 hr و غلظت 50ppm.. 88
شکل‏4‑8 نمودار تغییرات میزان جذب یون کادمیوم توسط جاذب ها با درصدهای متفاوت گرافن عامل دار شده در pH های متفاوت با میزان جاذب 25mg  و مدت زمان 1 hr و غلظت 50ppm.. 90

موضوعات: بدون موضوع  لینک ثابت
 [ 11:00:00 ق.ظ ]