بررسی عددی کاهش پاسخ لرزهای مخازن ذخیره مایع |
1-2-2-6- اندرکنش خاک و سازه…………………………………………………………………………….37
1-4- جمعبندی و نتیجهگیری……………………………………………………………………………….38
فصل دوم: جداسازی لرزهای سازهها و کاربرد آن در مخازن ذخیره مایع
چکیده…………………………………………………………………………………………41
2-1- فلسفه بکارگیری جداسازهای لرزهای و انواع آنها………………………………………………42
2-2- مروری بر مطالعات پیشین بر روی مخازن ذخیره مجهز به جداسازهای لرزهای………..44
2-3- پروژههای ساخته شده مخازن مجهز به سیستم جداسازی لرزهای در کشورهای مختلف……..50
2-4- جمعبندی……………………………………………………………………..54
فصل سوم : بررسی عددی رفتار دینامیکی مخازن مجهز به سیستم جداساز لرزهای با استفاده از روش اجزای محدود
چکیده……………………………………………………………………………..57
3-1-مقدمه……………………………………………………………………………...58
3-2- معرفی مدل اجزای محدود مورد استفاده در تحلیل عددی…………………………58
3-3- صحتسنجی نتایج مدل عددی ……………………………………………………..60
3-3-1- صحت سنجی تحت بارهای هارمونیک …………………………………………………………….60
3-3-2- صحتسنجی تحت بارهای لرزهای…………………………………………………………62
3-4- معرفی سیستم جداساز استفاده شده در مدل عددی……………………………….65
3-5- آنالیزهای عددی انجام شده بر روی مخازن با ابعاد واقعی……………………………67
3-5-1- ابعاد مخازن واقعی انتخاب شده جهت انجام مطالعات پارامتریک……………………………………67
3-5-2-بارهای لرزهای اعمال شده به مخازن……………………………………………………………………….67
3-6-تحلیل نتایج حاصل از انجام آنالیزهای عددی………………………………………………….70
3-6-1- نتایج عددی حاصل برای پارامترهای طراحی…………………………………………………………….70
3-6-2- نتایج عددی حاصل برای ماکزیمم ارتفاع آزاد مایع……………………………………………….79
3-7- جمعبندی و نتیجهگیری…………………………………………………………………..86
فصل چهارم : ارزیابی عملکرد مدلهای ساده شده در برآورد پاسخ لرزه ای مخازن جداسازی شده
4-1- مقدمه………………………………………………………………………….90
4-2- معرفی مدل مکانیکی جرم- فنراستفاده شده…………………………………….91
4-3- نتایج حاصل از تحلیل عددی مدل جرم و فنر مخازن جداسازی شده……………………..93
4-3- 1- مقایسه نتایج جرمهای معادل سیال……………………………………………….94
4-3- 2- مقایسه نتایج مدل اجزای محدود و مدل جرم و فنر برای مخازن جداسازی شده …………………96
4-3- 3- بررسی دقت روش جمع مجذور مربعات…………………………………………………………………99
4-3- 4- محاسبه ارتفاع امواج سطحی مایع برای نمونههای مورد بررسی………………………………………100
فصل پنجم : نتیجه گیری
نتیجه گیری……………………………………………………………………………………………104
فهرست منابع و ماخذ
منابع……………………………………………………………………………………………………….107
چکیده
هدف اصلی در تحقیق حاضر، بررسی نحوه تاثیر وجود جداسازهای لرزهای بر روی عملکرد دینامیکی مخازن ذخیره مایع در هنگام زلزله است. در این راستا لازم است ابتدا رفتار دینامیکی مخازن در هنگام وقوع زلزلههای واقعی شناخته شده و انواع خرابیهای لرزهای ممکنالوقوع در مخازن ذخیره مایع معرفی گردد. این خرابیها سرمنشا تحقیقات زیادی در خصوص تحلیل دینامیکی مخازن میباشد که چکیده این تحقیقات در قالب دستورالعملهای کاربردی، در آییننامههای معتبر منعکس شدهاند. لذا در قسمت پایانی فصل، فلسفه بکار گرفته شده در برخی از آییننامههای معتبر در رابطه با نحوه اعمال اثرات دینامیکی رفتار مخازن مرور میشود و مقررات آنها پیرامون مسائل کلی و مهم در حوزه تحلیل دینامیکی مخازن، مورد بررسی و مقایسه قرار میگیرد.
1-1- خسارات وارد شده به مخازن ذخیره مایع تحت بارهای لرزهای
مشاهدات انجام شده در خصوص عوامل موثر بر خرابیهای مخازن ذخیره مایع در هنگام اعمال بارهای لرزهای، بیانگر آسیبپذیری بیشتر مخازن فولادی نسبت به مخازن بتنی میباشد.تجربیات زلزلههای گذشته باعث شده است که آییننامههای معتبر، مقررات خود را برای تحلیل دینامیکی مخازن دائما بهبود دهند. اگر چه مقررات آییننامهای در خصوص بررسی برخی از پدیدهها به درک یکسانی رسیده است، اما فلسفه بکار گرفته شده در آییننامههای مختلف،برای بررسی برخی دیگر از پدیدهها، متفاوت بوده و هنوز جمعبندی یکسانی در رابطه با آنها وجود ندارد. به عنوان مثال اثر سقف مخازن در باز توزیع نیروهای طراحی، نحوه تاثیر عوامل مختلف بر برآورد ارتفاع قسمت آزاد بالای مخازن و یا باز توزیع تنشها در هنگام بلند شدن مخزن و …. از جمله مواردی هستند که هنوز مدل تحلیلی یکسانی برای آنها وجود ندارد.
بنابراین موضوع تحلیل دینامیکی مخازن ذخیره مایع، اگر چه موضوعی آشنا و با پیشینه طولانی است، اما به دلیل تعدد پدیدههای درگیر با آن، هنوز دارای وجوه مبهم بسیاری است که باعث پویایی تحقیقات در این زمینه شده است. از طرفی، حضورپدیدههایی نظیر اندرکنش مایع-سازه و پدیده اندرکنش سازه-خاک بر پیچیدگیموضوع تحلیل دینامیک مخازن و تنوع خرابیهای مشاهده شده در آنها میافزایند. شناخت دقیق انواع خرابیهای ناشی از اعمال بارهای لرزهای در مخازن ذخیره، میتواند دیدگاه اولیهای را در رابطه با زمینههای تحقیق فراهم آورد.
در یک جمع بندی کلی خرابیهای حاصل در مخازن ذخیره مایع در هنگام زلزله را میتوان در انواع ذیل خلاصه کرد.
1- کمانش جداره مخزن در اثر نیروهای هیدرودینامیک ناشی از اندرکنش مایع- سازه
2- خرابی در اثر حرکت سیال مواج در هنگام زلزله و برخورد آن با سقف و قسمتهای فوقانی جداره مخزن
یک مطلب دیگر :
3- نشت مایع از مخزن به دلیل ایجاد تنشهای حلقوی بالا در محل اتصالات
4- بلند شدگی مخزن از روی پی (برای مخازن مهار نشده)
5- کمانش ستونهای ثابت میانی که برای نگه داشتن سقف بکار میروند
6- حرکتهای جانبی سازه مخزن (عدم استفاده از اتصالات انعطافپذیر در محل اتصال لولههای ورودی و خروجی مایع با مخزن ممکن است باعث پاره شدن ورق جداره یا خرابی ملحقات مخزن گردد).
1-1-1-خرابیهای حاصل از اثرات نیروهای هیدرودینامیک
مهمترین نوع خرابی مشاهده شده برای مخازن ذخیره مایع فولادی، خرابی ناشی از کمانش جداره مخزن میباشد. این کمانش در اثر نیروی هیدرودینامیک فشاری حاصل از لنگر خمشی تولید شده در هنگام زلزله بوجود میآید. در حالت کلی دو نوع کمانش در جداره مخازن فولادی گزارش شده است. کمانش جداره ممکن است در حالتی که جداره چندان ضخیم نیست، قبل از جاری شدن کامل مصالح رخ دهد که به این نوع کمانش، کمانش لوزی شکل یا الماسی گفته میشود.
همچنین کمانش ممکن است با جاری شدن مصالح همراه باشد که به آن کمانش پافیلی میگویند. این دو نوع کمانش از لحاظ فلسفه تشکیل، محل وقوع و شکل ظاهری با یکدیگر تفاوت دارند.
1-1-1-1-کمانش لوزی شکل[1]
همانطور که اشاره شد این نوع کمانش در حقیقت نوعی از کمانش الاستیک است (که البته میتواند غیر الاستیک هندسی نیز باشد) که بدلیل تنشهای فشاری محوری ناشی از بارهای هیدرودینامیک لرزهای حاصل میگردد. این نوع کمانش معمولا در مخازن با نسبت ارتفاع به شعاع بزرگ و در محل یک سوم پایینی جداره رخ میدهد. یعنی در جایی که تنشهای ناشی از فشار هیدرواستاتیک نسبت به تنش تراز کف جداره کوچکتر هستند. مقدار تنش فشاری برای ایجاد چنین کمانشی را میتوان از تئوری کمانش خطی بدست آورد. مقدار تنش بحرانی کمانش برای استوانه پوستهای تحت فشار محوری خالص برابر با مقدار زیر بدست میآید.
که E مدول الاستیسیته و t ضخامت پوسته و R شعاع مخزن میباشد. این مقدار تئوریک را نمیتوان به عنوان تنش مجاز فشاری در مخازن تحت بارهای دینامیکی بکار گرفت. زیرا در مخازن تحت بار زلزله، اولا تمام پوسته تحت فشار یکنواخت قرار ندارد. ثانیا وجود فشار داخلی مایع باعث ایجاد تنشهای محیطی در جداره مخزن میشود و این تنشهای محیطی بر مقاومت جداره در مقابل تنشهای فشاری تاثیر گذارند. ثالثا جداره مخزن دارای نقایص اولیه است که در روند ساخت بوجود آمده و نمیتوان آن را یک ماده یکنواخت فرض کرد. بنابراین اثرات این سه عامل یعنی عیوب اولیه، فشار داخلی مایع و عدم یکنواختی تنشهای فشاری را باید در رابطه تئوریک وارد کرد.
اثرات ناشی از عیوب ساخت موجود در جداره، تنشهای مجاز فشاری را به طرز چشمگیری کاهش میدهد. اما فشار هیدرودینامیک مایع در داخل پوسته، باعث کاهش اثرات ناشی از عیوب اولیه شده و از این طریق به افزایش تنش مجاز فشاری کمک میکند. همچنین عامل سوم یعنی عدم یکنواختی تنشهای فشاری ناشی از لنگر خمشی، احتمال همزمان شدن تنش فشاری بیشینه در محل حضور عیوب اولیه را کمتر کرده و باز هم باعث افزایش تنش مجاز فشاری میگردد. با این حال اثر منفی عامل اول یعنی عیوب اولیه بسیار زیاد است و اثرات مثبت دو عامل دیگر را خنثی میکند. در نتیجه تنش فشاری مجاز در حالت کمانش الاستیک عملا کمتر از مقدار پیشنهادی رابطه (1-1) میباشد. در شکل (1-1) نمونههایی از کمانش الماسی یا لوزی شکل نشان داده شده است.
1-1-1-2- کمانش پافیلی[2]
صورت دیگری از کمانش وجود دارد که معمولا در ناحیه پایین مخازن کوتاه با نسبت ارتفاع به شعاع مخزن کوچکتر از یک رخ میدهد. این کمانش در اثر ترکیب تنشهای محیطی ناشی از فشار داخلی مایع و تنشهای فشاری ناشی از زلزله ایجاد میگردد. با توجه به مطالعات انجام شده توسط محققین قبلی [1]، کمانش پافیلی در اثر مشارکت تنشهای قائم و تنشهای حلقوی کششی، بوجود میآید[2]. باید دقت کرد که در کمانش پافیلی، ابتدا مصالح جاری شده و سپس کمانش پلاستیک رخ میدهد. در حالی که در نوع الماسی، جداره مخزن قبل از جاری شدن مصالح کمانش میکند. همچنین باید دقت کرد که فشار داخلی مایع به جداره در حالت کمانش الاستیک نقش مثبت دارد و باعث میشود که اثرات عیوب اولیه کمتر و تنش مجاز فشاری بیشتر شود. اما در مورد کمانش پافیلی، فشار داخلی نقش منفی داشته و باعث کاهش تنش مجاز میگردد. شکل(1-2) چند نمونه از کمانش پافیلی را نشان میدهد.
در یک جمعبندی کلی میتوان گفت که کمانش الاستیک بیشتر برای مخازن لاغر و بلند که نسبت شعاع به ضخامت آنها پایین است، رخ میدهد. اما کمانش پافیلی بیشتر برای مخازن کوتاه و پهن با نسبت ارتفاع به شعاعِ کمتر از یک رخ میدهد.
1-1-2- خرابیهای حاصل از حرکت امواج مایع در محل سطح آزاد سیال
در هنگام وقوع زلزله قسمتی از مایع مخزن به صورت رفت و برگشتی و با پریودی به مراتب طولانیتر از پریود زلزله در حرکت است. این قسمت از مایع، باعث ایجاد امواج سطحی در محل سطح آزاد میشود که این امواج ممکن است با سقف و جداره بالای مخزن برخورد کنند. نحوه خرابی مخازن با سقف ثابت و شناور در مواجه با پدیده امواج مایع، متفاوت است. در حالت کلی خرابیهای ناشی از حرکت مایع مواج در بالای مخزن را میتوان به شکل زیر خلاصه کرد.
- در مورد مخازن با سقف ثابت، ممکن است برخورد مایع مواج با جداره و سقف مخزن، باعث کمانش آنها در محل نزدیک به سقف شود (شکل1- 3 ، 1-4 ، 1-5 ، 1-6 ).
فرم در حال بارگذاری ...
[جمعه 1399-08-02] [ 07:14:00 ق.ظ ]
|