2-2- آشکارسازی چهره………………….. 13

2-2-1- روش‏های مبتنی بر مدل رنگ…………………….. 13

2-2-2- روش‏های مبتنی بر ویژگی‏های شبه هار…………………… 14

2-2-3- روش‏های مبتنی بر شبکه عصبی……………………. 14

2-3- آشکارسازی چشم…………………… 15

2-3-1- روش‏های مبتنی بر نورپردازی و تصویربرداری در طیف مادون قرمز……. 15

2-3-2- روش‏های مبتنی بر دوسطحی کردن تصویر…………………… 18

2-3-3- روش‏های مبتنی بر پروجکشن……………………. 19

2-3-4- روش‏های مبتنی بر یادگیری……………………. 20

2-4- آشکارسازی سایر اجزای چهره………………….. 21

2-4-1- آشکارسازی دهان (لب) …………………..21

2-4-2- آشکارسازی بینی……………………. 21

2-5- ردیابی چهره و اجزای آن…………………… 22

2-5-1- تخمین حرکت…………………….. 23

2-5-2- تطابق……………………. 23

2-6- استخراج ویژگی‏های مربوط به کاهش هوشیاری……………………. 24

2-6-1- ویژگی‏های ناحیه چشم…………………… 24

2-6-2- ویژگی‏های دهان…………………… 30

2-6-3- ویژگی‏های سر……………………30

پایان نامه و مقاله

 

2-7- تشخیص خستگی و عدم تمرکز حواس…………………….. 31

2-7-1- روش‏های مبتنی بر حد آستانه…………………… 31

2-7-2- روش‏های مبتنی بر دانش…………………….. 32

2-7-3- روش‏های مبتنی بر آمار و احتمال…………………… 33

2-8- سیستم‏های نظارت چهره راننده در خودروهای تجاری……………………. 34

3- سیستم پیشنهادی……………………. 35

3-1- پیکربندی کلی سیستم پیشنهادی……………………. 35

3-1-1- نورپردازی و تصویربرداری……………………. 36

3-1-2- سخت‏افزار و پردازنده …………………..37

3-1-3- نرم‏افزار هوشمند…………………… 37

3-2- آشکارسازی چهره………………….. 38

3-2-1- ویژگی‏های شبه هار…………………… 39

3-2-2- انتخاب و تعیین اهمیت ویژگی‏ها برای تشکیل یک طبقه‏ بندی ‏کننده قوی…….. 41

3-2-3- درخت تصمیم آبشاری تقویت‏ شده………………….. 42

3-3- ردیابی چهره………………….. 44

3-3-1- پنجره جستجو…………………… 45

3-3-2- معیار تطابق……………………. 46

3-4- استخراج ویژگی‏های مربوط به کاهش هوشیاری……………………. 47

3-4-1- ویژگی‏های ناحیه چشم…………………… 47

3-4-2- ویژگی‏های ناحیه چهره و سر…………………… 55

یک مطلب دیگر :

 
 

3-5- تشخیص کاهش هوشیاری……………………. 58

3-5-1- سیستم خبره فازی……………………. 58

3-5-2- تولید خروجی نهایی……………………. 64

4- نتایج آزمایش‏ها و ارزیابی سیستم…………………… 69

4-1- نحوه آزمایش سیستم…………………… 69

4-2- معیار‏های ارزیابی……………………. 72

4-3- آشکارسازی چهره………………….. 73

4-4- ردیابی چهره …………………..75

4-5- استخراج ویژگی‏های ناحیه چشم…………………… 77

4-6- استخراج ویژگی‏های ناحیه سر و چهره …………………..82

4-7- تشخیص کاهش هوشیاری……………………. 86

4-8- ارزیابی کلی سیستم و الگوریتم‏ها………………….. 93

4-8-1- بررسی سرعت پردازش سیستم پیشنهادی……………………. 93

4-8-2- بررسی پیچیدگی محاسباتی الگوریتم‏ها………………….. 94

5- نتیجه‏گیری و پیشنهادات…………………….. 95

6- مراجع……………………99

چکیده:

هر ساله تصادفات رانندگی زیادی به دلیل خواب‏آلودگی و عدم تمرکز حواس راننده در سراسر دنیا رخ می‏دهد که خسارت‏های جانی و مالی فراوانی به همراه دارند. یکی از روش‏های تشخیص خستگی و عدم تمرکز حواس، استفاده از سیستم‏های نظارت چهره راننده است. سیستم‏های نظارت چهره راننده با دریافت تصاویر از دوربین و پردازش آنها، نشانه‏های خواب‏آلودگی و عدم تمرکز حواس را از چشم، سر و چهره استخراج می‏کنند. در این پایان‏نامه یک سیستم نظارت چهره راننده طراحی شده است که با استخراج نشانه‏های خستگی و عدم تمرکز حواس از ناحیه چشم و چهره، کاهش هوشیاری راننده را تخمین می‏زند. در این سیستم چهار ویژگی شامل درصد بسته بودن چشم (PERCLOS)، نرخ پلک زدن، کاهش فاصله بین پلک‏ها و میزان چرخش سر استخراج می‏شود. سه ویژگی اول مربوط به نشانه‏های بروز خستگی و عدم تمرکز حواس در ناحیه چشم و ویژگی آخر مربوط به نشانه‏های کاهش هوشیاری در ناحیه چهره و سر می‏باشد. ویژگی‏های ناحیه چشم بر اساس تغییرات پروجکشن افقی ناحیه چشم و ویژگی‏های ناحیه چهره بر اساس بررسی قالب چهره استخراج می‏گردد. سپس این ویژگی‏ها توسط یک سیستم خبره فازی مورد پردازش قرار می‏گیرد تا میزان خستگی و عدم تمرکز حواس راننده تخمین ‏زده شود. تصویربرداری سیستم پیشنهادی در طیف مرئی و با دوربین سطح خاکستری انجام شده است. نتایج آزمایش‏ها بر روی فیلم‏های تهیه شده در محیط واقعی و آزمایشگاهی نشان می‏دهد که روش پیشنهادی دقت بسیار خوبی در استخراج ویژگی و تشخیص کاهش هوشیاری راننده دارد. از لحاظ سرعت اجرای الگوریتم، سرعت سیستم پیشنهادی حدود 5 فریم در ثانیه می‏باشد که می‏توان آن را سیستم بلادرنگ محسوب کرد.

پیشگفتار:

افزایش تعداد خودروها در جهان و در نتیجه آن افزایش آمار خسارات و تلفات ناشی از تصادفات، باعث شد تا محققین به دنبال کشف علل اصلی تصادفات رانندگی باشند. یکی از مهمترین این علل، خستگی و عدم تمرکز حواس راننده می‏باشد که علت اصلی حدود 20% از تصادفات محسوب می‏شود. با توجه به نقش موثر خستگی و عدم تمرکز حواس راننده در بروز تصادفات، راهکارهایی برای مقابله با این عامل معرفی شد. یکی از راهکارهای اصلی و جدید برای تشخیص خستگی و عدم تمرکز حواس راننده و اعلام هشدار در مواقع ضروری، سیستم‏های نظارت چهره راننده است. پیشنهاد تولید سیستم‏های نظارت چهره راننده اولین بار در اواخر قرن 20 میلادی مطرح شد، اما عمده تحقیقات در این زمینه مربوط به بعد از سال 2000 میلادی می‏باشد.

تاکنون طراحی و تولید چنین سیستم‏هایی در ایران به طور جدی مورد بررسی قرار نگرفته است. سیستم ارائه شده در این پایان‏نامه به عنوان اولین سیستم نظارت چهره راننده در ایران می‏باشد که قادر است میزان خستگی و عدم تمرکز حواس راننده را با استفاده از پردازش تصاویر چهره راننده تخمین بزند. هرچند تحقیقات بیشتری برای تولید یک سیستم نظارت چهره راننده با هدف کاربرد در خودروهای تجاری مورد نیاز است، اما این پایان‏نامه می‏تواند شروع بسیار خوبی برای آغاز تحقیقات در این زمینه باشد.

سعی شده نوشتار پایان‏نامه به نحوی روشن و ساده بیانگر روش پیشنهادی باشد، با این وجود خواننده گرامی می‏تواند در صورت داشتن سوال، بیان نظرات یا ارائه انتقاد از طریق پست الکترونیک hoseyn@sigari.ir یا hoseyn_sigari@engineer.com با اینجانب مکاتبه نماید.

1- مقدمه

1-1- تعریف سیستم های نظارت چهره راننده

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...