1-2-2 افزودنی به خمیر مثبت… 32
1-2-3 افزودنی الکترولیت… 33
1-3 کاربرد فناوری نانو در باتری سرب- اسید.. 34
1-3-1 فناوری نانو. 35
1-3-2 نانوذرات باریم سولفات (BaSO4). 37
4-1هدف از کار حاضر. 39
2-1 مواد و تجهیزات استفادهشده. 40
2-2 سنتز نانو ذرات باریم سولفات… 41
2-3 روشهای بررسی اثر نانو ذرات باریم سولفات… 42
2-3-1 تکنیکهای آزمایشگاهی و الکتروشیمیایی.. 42
2-3-2 آمادهسازی خمیر برای باتری سرب اسیدی.. 43
2-3-2-1 محاسبات مواد فعال برای باتری استارتی (SLI) 30Ah در ƞPAM = 50% و ƞNAM = 45%… 43
2-3-2-2 محاسبهی محتوای فاز جامد در خمیر. 45
2-3-3 تهیهی باتری جهت بررسی عملکرد آن در حضور نانوذرهی BaSO4 47
2-3-3-1 تهیهی خمیر منفی.. 48
2-4 سیستم مطالعهای افزودنی الکترولیتی.. 53
3-1 سنتز نانوذرات باریم سولفات… 55
3-1-1 بهینه سازی غلظت واکنشدهندهها 59
3-1-2 بهینهسازی دمای واکنش…. 61
3-1-3 بهینهسازی حجم محلول آمادهسازی.. 63
3-1-4 بهینهسازی دور همزدن.. 65
3-2 بررسی اثر نانوذرات باریم سولفات بر رفتار الکتروشیمیایی و عملکرد باتری سرب اسید.. 67
3-2-1 بررسی خواص الکتروشیمی الکترود خمیر کربن/ اکسید سرب در حضور نانوذرات BaSO4 67
3-2-1-1 بهینهسازی مقدار پودر اکسید سرب (PbO) با درجهی اکسیداسیون 80%. 68
3-2-1-2 بهینهسازی غلظت الکترولیت اسیدسولفوریک (H2SO4). 69
3-2-1-3 بهینهسازی مقدار نانوذرهی باریم سولفات در خمیر کربن.. 70
3-2-2 بررسی اثر نانوذرات BaSO4 در بهبود عملکرد باتری سرب اسید.. 73
3-2-2-1 نتایج آنالیز شبکهی مصرفی.. 73
3-2-2-2 نتایج درصد سرب آزاد. 75
3-2-2-1 تست ظرفیت اولیه. 75
3-2-2-2 تست استارت سرد. 77
3-2-2-3 تست شارژ پذیری.. 80
3-3 بررسی تاثیرافزودنیهای الکترولیتی بر عملکرد باتریهای سرب اسید.. 81
3-3-1 تولید و احیاء لایهی اکسیدی در سطح الکترود Pb. 83
3-3-1-1 بررسی مکانیسم اثر سدیم فلورید در ولتامتری چرخهای الکترود سرب… 83
3-3-1-2 بررسی اثر سدیم هگزامتافسفات در ولتامتری چرخهای الکترود سرب: 85
3-3-2 پتانسیل تولید هیدروژن.. 86
3-3-3 پتانسیل تولید اکسیژن.. 88
3-3-4 محل و ارتفاع پیک جریان آندی.. 91
3-3-5 برگشتپذیری.. 92
نتیجهگیری.. 94
مراجع: 95
فهرست شکلها:
شکل1- 1: اجزای تشکیلدهندهی باتری سرب اسیدی. 3
شکل1- 2: شمای واحد بارتن. 5
شکل1- 3: شمای انواع واحد بارتن. الف) آسیاب گلوله ای کونیکال، ب) میل اکسید سرب کلرید. 6
شکل1- 4: ساختار دوگانهی PAM. 9
شکل1- 5: تصویر میکروسکوپ الکترونی پویشی (SEM) برای ساختار سه نوع از ذرات PbO2. 9
شکل1- 6: توزیع ساختار ناهمگن در حجم زیاد ذرات PbO2. 10
شکل1- 7: کریستالهای سرب که در شبکهی اسکلتی به هم وصل شدهاند 11
شکل1- 8: فرایندهای انتقال یون. 12
شکل1- 9: فرایندهای شارژ و دشارژ در باتری سرب اسید. 18
شکل1- 10: فرمول فردونبرگ برای لیگنین. 22
شکل1- 11: تصویری از لایهی PbSO4. 23
شکل1- 12: تغییرات اولیهی پتانسیل در پلاریزاسیونهای سرعتبالای صفحهی منفی 28
شکل1- 13: (آ) تصاویر SEM میکرو ساختاری ذرات باریم سولفات 29
شکل1- 14: تغییر در زمان دشارژ ( ظرفیت). 30
شکل1- 15: اثر حضور BaSO4 در NAM در عملکرد ظرفیت سل در چرخه با سرعت دشارژ 20 ساعت [55]. 31
شکل1- 16: تعداد کل چرخههای HRPSoC انجامشده بهعنوان تابعی از مقدار BaSO4 در NAM [54]. 31
شکل1- 17: شماتیک سنتز مواد در اندازهی نانو. 36
شکل1- 18: ساختار کریستالی پیشبینیشدهی ارترومبیک باریم سولفات [123]. 38
شکل2- 1: شماتیک الکترود استفادهشده برای بررسی اثر نانو ذرات BaSO4 . 42
شکل2- 2: حجم محلول H2SO4 ( 1/4 یا 1/18 g cm-3) نسبتهای متفاوتی از H2SO4/ LO. [2]. 47
شکل2- 3: پلیتهای مثبت و منفی استفادهشده در مونتاژ باتری. 50
شکل2- 4: واحدهای باتری مونتاژ شده. 52
یک مطلب دیگر :
شکل 3- 1: ساختار گلیسرول. 54
شکل 3- 2: لیپوزوم گلیسرولی که یونهای SO4-1 را به سبب پیوند هیدروژنی احاطه کرده است. 55
شکل 3- 3: مکانیسم تشکیل نانوذرات BaSO4. 56
شکل 3- 4: مکانیسم ممانعت فضایی گلیسیرین و کنترل اندازهی نانوذرات BaSO4. 57
شکل 3- 5: تصاویر میکروسکوپ الکترونی پویشی (SEM)، برای بهینهسازی غلظت واکنشدهندهها. 59
شکل 3- 6: تصاویر میکروسکوپ الکترونی (SEM) مربوط به بهینهسازی دمای واکنش. 61
شکل 3- 7: تصاویر میکروسکوپ الکترونی پویشی (SEM) ب برای بهینهسازی حجم محلول آمادهسازی. 63
شکل 3- 8: تصاویر میکروسکوپ الکترونی پویشی (SEM)، در بهینه سازی دور همزن مغناطیسی. 65
شکل 3- 9: نتیجهی XRD نمونهی باریم سولفات سولفات. 65
شکل 3- 10: ولتاموگرامهای ولتامتری چرخهای الکترود خمیر کربن برای بهینهسازی پودر اکسید سرب. 68
شکل 3- 11: ولتاموگرام ولتامتری چرخهای برای بهینهسازی غلظت الکترولیت.. 69
شکل 3- 12: نمودارهای ولتامتری چرخهای برای بهینهسازی مقدار نانوذرهی باریم سولفات BaSO4. 71
شکل 3- 13: نمودار کالیبراسیون مقدار نانوذرهی BaSO4. 71
شکل 3- 14: ولتاموگرام چرخهای مقایسهای BaSO4 معمولی با نانوذرات BaSO. 72
شکل 3- 15: نمودار ولتاژ بر حسب زمان بهمنظور شبیهسازی استارت ماشین ثبتشده است. 76
شکل 3- 16: نمودار ولتاژ نسبت به زمان. برای تعیین t6v. 78
شکل 3- 18: ولتاموگرام چرخهای در محلول الکترولیت در حضور و عدم حضور افزودنی الکترولیت. 83
شکل 3- 21: پتانسیل احیا هیدروژن در غلظتهای متفاوتی از افزودنی الکترولیت.. 87
شکل 3- 25: ارتفاع پیک جریان اکسیداسیون Pb در حضور افزودنیهای الکترولیتی پیشنهادی با غلظتهای متفاوت……..90
شکل 3- 26: محل پیک اکسیداسیون Pb به PbSO4 در حضور افزودنی الکترولیتی پیشنهادی در غلظتهای متفاوت………92
شکل 3- 27: نمودار اختلافپتانسیل (برگشتپذیری) بر اساس غلظت افزودنی الکترولیتی پیشنهادی……………………………..93
فهرست جدولها:
جدول1- 1: چگالی ویژه نسبیی اسیدسولفوریک و شرایط شارژ در باتری سرب اسید. 13
جدول1- 2: انواع مختلف کربن استفادهشده در ترکیب اکسپنذرها. 25
جدول1- 3: خصوصیات ساختاری PbSO4، BaSO4، SrSO4. 27
جدول1- 4: روشهای متنوعی برای سنتز مواد در اندازهی نانو. 37
جدول2- 1: لیست مواد استفادهشده. 40
جدول2- 2: لیست تجهیزات استفادهشده. 41
جدول2- 3: وزن مولکولی و حجم مولی مواد فعال لازم برای محاسبات [4]. 46
جدول2- 4: درصد وزنی مواد تشکیلدهندهی خمیر منفی. 48
جدول2- 5: برنامه شارژ باتری استارتی نوع A و B.. 53
جدول2- 6: لیست افزودنی الکترولیت محلول H2SO4 و مشخصات کلی آنها. 54
جدول3- 1: مشخصات محلولهای استفادهشده برای بهینه سازی غلظت واکنش دهنده ها. 59
جدول3- 2: شرایط آزمایشی برای بهینه سازی دمای واکنش. 61
جدول3- 3: شرایط واکنش شیمیایی برای بهینهسازی حجم محلول آمادهسازی. 63
جدول3- 4: شرایط واکنش رسوبگیری نانوذرهی BaSO4 برای بهینه سازی دور هم زدن. 65
جدول3- 5: مشخصات الکترودهای خمیر کربن آماده شده برای بهینهسازی مقدار اکسید سرب PbO. 67
جدول3- 6: مشخصات مواد تشکیلدهندهی خمیر کربن برای بهینهسازی مقدار نانوذرهی BaSO4 70
جدول3- 7: آنالیز سرب مصرفی در تولید اسکلت خام شبکه. 74
جدول3- 8: نتایج اندازهگیری سرب آزاد برای پلیتهای منفی. 75
جدول3- 9: نتایج دوبار تست ظرفیت اولیه برای دو نوع باتری. 76
جدول3- 10: نتایج استارت سرد. 79
جدول3- 11: نتایج تست شارژپذیری. 80
اساس باتری سرب اسیدی
باتری سرب اسید اولین باتری قابل شارژ موفق ازنظر تجاری بود و تاکنون پیشرفتهای روزافزونی داشته است [1]. در سال 1859، فیزیکدان فرانسوی گوستون پلنت[1] پلاریزاسیون بین دو الکترود مشخص غوطهور در محلولهای آبی رقیق از اسید سولفوریک را مطالعه کرد. او الکترودهای مختلف شامل؛ نقره، سرب، قلع، طلا، پلاتنیوم و آلومینیوم را موردبررسی قرارداد و دریافت که بر اساس نوع الکترود استفادهشده، وقتی جریان الکتریکی از درون الکترودها عبور میکند، سلها به اندازههای متفاوتی پلاریزه شده و تولیدکنندهی جریان معکوس میشوند. وی نتایج تمامی مشاهدات خود را در مقالهای تحت عنوان “تحقیقات درزمینهی قطبش ولتایی[2]” در سال 1859 در کومپتس رندوس[3] از دانشکدهی علوم فرانسه چاپ کرد [2].
یک باتری سرب اسید بزرگ (12V)، از 6 سِل که بهصورت سری به هم متصل شدهاند تشکیلشده است که هرکدام حدود 2 ولت پتانسیل ایجاد میکنند. هر سِل شامل دو نوع شبکهی سربی است که با مصالح سربی پوشانیده شده است. آند سرب اسفنجی Pb و کاتد PbO2 پودری است. شبکهها در محلول الکترولیت 4-5 مولار اسید سولفوریک غوطهور هستند و صفحههای فیبر شیشهای[4] بین الکترودها قرار داده میشود تا از اتصال فیزیکی بین صفحات و ایجاد اتصال بین آنها جلوگیری شود. زمانی که سِل دشارژ میشود، بهعنوان یک سِل ولتایی انرژی الکتریکی را به کمک واکنش زیر ایجاد میکند:
آند (اکسیداسیون):
Pb(s) + SO42-(aq) → PbSO4(s) + 2e– (1-1)
کاتد (احیا):