3-1 مقدمه. 27
3-2 تحقیقات صورت گرفته. 27
فصل چهارم: روش های رایج در پردازش سیگنال.. 31
4-1 مقدمه. 32
4-2 مقایسه روش های رایج در پردازش سیگنال.. 32
4-2-1 انواع آسیب… 33
4-2-2 انواع شیوه های تشخیص آسیب… 33
4-3 روش های تشخیص آسیب… 33
4-3-1 تغییر در پارامترهای مدال.. 34
4-3-2 تغییر در فرکانس های طبیعی.. 34
4-3-3 تغییر در اشکال مدی.. 34
4-3-4 روش های بروز رسانی مدل.. 35
4-3-5 روش های بر پایه شبکه های عصبی.. 35
4-3-6 روش های تشخیص الگو. 36
4-3-7 روش فیلتر کالمان.. 36
4-3-8 روش آماری.. 36
4-4 روش تحلیل سیگنال.. 37
4-4-1 تبدیل زمان کوتاه فوریه. 37
4-4-2 توزیع ویگنر- ویل.. 40
4-4-3 تبدیل هیلبرت – هوانگ… 42
4-4-4 تبدیل موجک… 45
4-4-5 خصوصیات ویولت… 52
فصل پنجم: تحلیل، بحث و نتایج.. 53

 

5-1 مقدمه. 54
5-2 تبدیل هیلبرت-هوآنگ… 54
5-3 تجزیه تجربی مودی.. 54
5-3-1 گام اول.. 55
5-3-2 گام دوم. 55
5-3-3 گام سوم. 55
5-3-4 گام چهارم. 60
5-3-5 گام پنجم.. 60
5-3-6 گام ششم.. 60
5-4 تحلیل طیفی هیلبرت… 66
5-5 نتایج مدلسازی.. 70
5-5-1 قاب یک دهانه-یک طبقه. 70
5-5-2- پاسخ شتاب مطلق قاب یك طبقه – یك دهانه: 72
5-5-3- توابع مودی ذاتی.. 74
5-5-4 مقایسه پارامترهای حاصل از تبدیل هیلبرت… 78
5-5-4-1 بررسی نمودارهای زمان- دامنه- فرکانس…. 78
5-5-4-2 فاز 81
5-5-4-3 طیف حاشیه ای هیلبرت… 82
5-5-4-4 فرکانس میانگین آنی.. 83
5-5-5 نرم شدگی نهایی.. 85
5-5-6 نرم شدگی حداکثر. 86
5-5-7 قاب دو دهانه-یک طبقه. 87
5-5-8- پاسخ شتاب مطلق قاب یك طبقه – دو دهانه: 88
5-5-9 توابع مودی ذاتی.. 89
5-5-10 مقایسه پارامترهای حاصل از تبدیل هیلبرت… 94
5-5-10-1 بررسی نمودارهای زمان-دامنه-فرکانس…. 94
5-5-10-2 فاز 97
5-5-10-3 طیف حاشیه ای هیلبرت… 98
5-5-10-4 فرکانس میانگین آنی.. 99

یک مطلب دیگر :

 

5-5-11 نرم شدگی نهایی.. 100
5-5-12 نرم شدگی حداکثر. 101
فصل ششم: نتیجه گیری و پیشنهادات… 102
6-1 مقدمه. 103
6-2 جمع بندی و نتیجه گیری.. 103
6-3 پیشنهادات برای تحقیقات آتی.. 104
منابع و مراجع.. 105
چكیده
انواع سازه های موجود از قبیل ساختمانها، پلها، سدها، تونلها و غیره، در طول زمان بهره برداری خود به دلیل انواع پدیده ها که با آنها مواجه میشوند، در معرض آسیب دیدگی قرار میگیرند. آسیبهای به وجود آمده در سازه ها ممکن است با شدت متفاوت و در نقاط مختلف در آن اتفاق بیفتد. این امر میتواند بهره برداری از سازه را مختل سازد و باعث خسارات بیشتری در آینده گردد. بنابراین تعیین محل و مقدار آسیب موجود در سازه و اقدام به موقع در جهت ترمیم آسیب دیدگی های موجود، امری ضروری به نظر میرسد. در این رساله مروری بر تبدیل هیلبرت هوانگ بعنوان روشی نو پا در تحلیل سیگنال­های نامانا و غیرخطی و همچنین استفاده از آن در تشخیص آسیب های وارد بر قابها صورت گرفته است.  در ابتدا به معرفی تبدیل هیلبرت هوانگ به عنوان یک ابزار قدرتمند در پردازش سیگنال­های نامانا،اشاره شده است. این تبدیل از دو قسمت تجزیه تجربی مودی و تحلیل طیفی تشکیل شده است همچنین مزایای این روش نسبت به دیگر روش­های پردازش سیگنال بیان شده است و در ادامه یک قاب یک دهانه و دو دهانه بتنی تحت شتاب نگاشت زلزله طبس و با استفاده از روش تاریخچه زمانی در برنامهSAP مدلسازی گردیده وجهت دو سازه سالم و آسیب دیده پاسخ­های شتاب از نرم­افزار اخذ و وارد نرم­افزار MATLAB شده است. این نرم­افزار این سیگنال پاسخ را به توابع مودی ذاتی تجزیه نموده و با اعمال تبدیل هیلبرت بر این توابع مودی، فرکانس­ها را جهت هر کدام از توابع مودی ذاتی بدست آورده وسپس از مجموعه این فرکانس­ها،فرکانس میانگین آنی راجهت هر دو سازه محاسبه می­گردد که با مقایسه نمودار فرکانس آنی دو سازه سالم و آسیب دیده مشاهده می­گردد سازه آسیب دیده در زمان پیک دامنه زلزله طبس با کاهش فرکانس مواجه گردیده است وهمچنین فاز سازه آسیب دیده نسبت به سازه سالم با کاهش مواجه بوده است. همچنین با استفاده از این کاهش فرکانس شدت آسیب به سازه  و مقدار تقریبی کاهش سختی آن نیز تخمین زده شده است.
کلمات کلیدی: تجزیه تجربی مودی، تبدیل هیلبرت-هوانگ، شناسایی سیستم، تشخیص آسیب، فرکانس میانگین.

 1-1 مقدمه
شناسایی سیستم­های سازه­ای یکی از موضوعات پویا در محدوده­ی مهندسی زلزله است [1]. روش­های شناسایی سازه به طور مشخص از تئوری در دو زمینه­ پردازش سیگنال و دینامیک سازه بهره می­گیرند که در این میان سیگنال نقش مهمی را ایفا می­کند [1]. لذا در تحقیق پیش­رو تلاش داریم تا با استفاده از تبدیل هیلبرت در قیاس با دیگر تبدیلات ریاضی از جمله فوریه به بررسی و تحقیق درباره­ی تعیین خسارت در تیرهای بتنی بپردازیم.
1-2 کلیات تحقیق
در آزمایشات مبتنی بر ارتعاش، فرض بر این است که اختلال در یک سیستم سازه­ای باعث ایجاد تغییرات درسیگنال­های ارتعاشی اندازه­گیری شده خواهد شد. بنابراین کمیت­های فیزیکی مرتبط و حساس به خواص سازه­ای مورد نظر برای اهداف کنترل باید انتخاب شود [1].اَنجام آزمایش­های لرزه­ای بر روی سازه­ها مطمئن­ترین راه برای تعیین خواص دینامیکی آنهامی­باشد. این آزمایشات در سال­های اخیر در کشورهای پیشرفته به عنوان روشی قابل قبول برای شناخت خواص سازه­ها به دَفعات مورد استفاده قرار گرفته است ودر ایران نیز نمونه­هایی از این آزمایشات انجام گرفته است.تبدیلِ هیلبرت به عنوان روشی نوظهور در پردازش سیگنال نامانا و غیرخطی توسعه داده شده است [2].
اخیراً با گسترش این روش، روش­های شناسایی سازه­ای نیز براساس آن پیشنهاد شده است [1]. تبدیل هیلبرت از دوبخش تجزیه تجربی مُودی و تحلیل طیفی هیلبرت تشکیل شده است.برای اِرتقاء عملکرد تبدیل هیلبرت تاکنون تحقیقات زیادی صورت پذیرفته امّا بیشتر تمرکز این تحقیقات بر روی قسمت تجزیه مودی بوده [3و4] و برروی قسمت تحلیل طیفی هیلبرت کار نسبتاً کمتری انجام شده است[5]. پاسخی که برای استفاده از روش مورد نظر این پروژه است،مقادیرجنبشی قابل اندازه­گیری در تست ارتعاشی، داده های شتاب می باشد.
1-3 خلاصه ­ای بر پایش سلامتی سازه
پایش سلامتی سازه­ها در دهه­های اخیر به دلیل افزایش نیاز به پایش دایم سازه­های بزرگ به زمینه تحقیقاتی مناسب تبدیل شده است.شناسـایی آسیب در یک سازه از اهمیت زیادی برخوردار است. زیرا کشف زود هنگام آسیب می­تواند از خرابی فاجعه­بار سازه جلوگیری کند. شناسایی آسیب بدون نیاز به تخریب سازه با استفاده از پاسخ­های فرکانسی توجه علاقمندان زیادی را در دهه­ی اخیر به خود جلب کرده است.
تغییر در مشخصات فیزیکی سازه­ها مثل سختی ،جرم و میرایی به علت آسیب، پاسخ­های فرکانسی سازه را تغییر می­دهد. اصل اساسی بیشتر روش­های شناسایی آسیب این است که آسیب موجود در سازه­ها، خواص سختی، جرم و خواص استهلاك انرژی سیستم را که با استفاده از پاسخ دینامیکی اندازه­گیری شده سیستم بدست می­آید، تغییر خواهد داد.
این شناسایی می­تواند برای درنظرگرفتن اقدامات احتیاطی انجام شود تا در صوررت لزوم برای کار تعمیر و نگهداری سازه برنامه­ریزی کنیم. بطور سنتی برای شناسایی آسیب در سازه­های عمرانی از بازرسی­های چشمی استفاده می­کنند.
تشخیص آسیب در سازه­های بزرگ به روش بصری محیطی امری هزینه­بَر و غیر مؤثر به حساب می­آید. لذا به این دلیل روشی که بتواند به صورت مؤثر رخداد آسیب را شناسایی و محل آن را معلوم کند مورد نیاز است.بنابراین، روش­های غیرمستقیمی که بتوانند به طور مداوم سازه را پیش از آنکه به وضعیت بحرانی برسد برای تشخیص مشکلات آن بازرسی کنند، ضرورت دارند.پایش سلامتی سازه،پاسخ سازه را تحت انواع بارگذاری کنترل شده و کنترل نشده تحلیل می­کند.
1-4 کلمات کلیدی به کار برده شده در این پروژه
این فصل با تعریف اصطلاحات به کار رفته در این پروژه ادامه می­یابد.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...