1-6-4-  سایر راکتورهای محصورسازی مغناطیسی.. 20

فصل دوم: سینیتیک همجوشی پلاسمای دوتریومهلیوم 3. 22

1-2- سوخت‌های جدید و خواص آنها 22

2-2- خواص دوتریوم. 24

2-3- خواص هلیوم 3. .. 25

2-4- پلاسما حالت چهارم ماده. 29

2-5- روشهای تولید پلاسما 30

2-6- پارامترهای بنیادی پلاسما 31

2-6-1- فرکانسها در پلاسما 31

2-6-2- سرعتها در پلاسما 32

2-7- گرم کردن پلاسما 33

2-7-1- گرمایش مقاومتی.. 33

2-7-2- گرمایش از طریق فشرده سازی.. 35

2-7-3- گرمایش توسط تاثیر میدان‌های الکترومغناطیسی.. 35

2-7-4- گرمایش توسط تزریق پرتو خنثی.. 36

2-8- گرمای همجوشی ذرات باردار. 36

2-9- روشهای بررسی پلاسما 37

2-10- فشار جنبشی و مغناطیسی پلاسما 38

2-11- دیواره سیستم راکتورهای همجوشی D-3He از طریق محصورسازی مغناطیسی.. 39

2-12- بارگذاری دیواره راکتور. 42

2-13- اساس روش محصورسازی.. 42

2-14- اتلاف انرژی پلاسما 46

2-14-1-تابش ترمزی 46

2-14-2- تابش سیکلوترونی.. 47

2-14-3- افت‌های انتقالی.. 48

2-15- فیزیک واکنش‌های همجوشی.. 48

2-16- آهنگ انجام واکنش…. 49

2-17- واکنش پذیری.. 50

2-17-1- واکنش پذیری واکنش‌های هستهای (پارامتر سیگما-وی). 50

2-17-2- واکنشپذیری باکی.. 51

2-17-3- واکنشپذیری با معادله بوش-هال.. 51

2-17-4- واکنشپذیری با معادله ماکسول.. 52

2-18- فاکتور Q، زمان محصورسازی انرژی، توازن توان.. 54

 

2-18-1- فاکتور Q… 54

2-18-2- زمان حبس انرژی.. 55

2-18-3- توازن توان… 55

2-19- معیار لاوسون و زمان حبس انرژی.. 56

2-20- معادلات اساسی دوتریوم و هلیوم 3.. 60

2-21- موازنه انرژی…   60

2-22- سوختن پلاسمای دوتریوم و هلیوم 3.. 61

فصل سوم:کنترل ناپایداری گرمایی در سوخت پلاسمای D-3He. 66

3-1- مشکل اساسی راکتورهای همجوشی.. 66

3-2- کنترل مغناطیسی.. 67

3-3- کنترل جنبشی…….68

3-4- کنترل مگنتو هیدرودینامیکی(MHD). 69

3-5- روشهای استفاده از کنترل جنبشی.. 70

3-6- اهداف کنترل.. 74

3-7- طراحی کنترلر. 76

3-8- نتایج شبیه سازی.. 78

3-9-کنترل خطی با استفاده از روش تعدیل تزریق سوخت… 80

فصل چهارم: پارامترهای موثر بر همجوشی پلاسمای D-3He در سیستم توکامک….. 82

4-1- مقدمه              82

4-2- نتایج برای حالت ناپایدار. 83

4-3-  پایداری پلاسمای دوتریوم و هلیوم 3 با استفاده از روش کنترلی تعدیل میزان تزریق.. 94

فصل پنجم: نتیجه گیری وبحث… 101

***فهرست جداول***

جدول1-1- برخی از واکنش‌های همجوشی………………………………………………………………………………………………………………… 7

جدول1-2- انواع راکتورها برحسب روش محصور کردن پلاسما………………………………………………………………………………… 17

جدول2-1- نسل‌های مختلف سوخت‌های همجوشی ………………………………………………………………………………………………… 27

جدول 2-2- مقادیر عددی پارامترهای معادله باکی……………………………………………………………………………………………………. 51

جدول2-3- مقادیر ثوابت برای واکنش‌های همجوشی مختلف در معادلات بوش-هال……………………………………………………. 52

جدول2-4- مقادیر عددی C1 و C2 و C3 برای واکنش‌های D-T, D-D و D-3He………………………………………………. 54

جدول 3-1- پارامترهای ITER90-HP ……………………………………………………………………………………………………………….. 73

جدول 3-2- شرایط اولیه ی پلاسما ………………………………………………………………………………………………………………………… 74

جدول 3-3- نقطه تعادل–نقطه احتراق ……………………………………………………………………………………………………………………… 79

جدول 3-4- پارامترهای کمیت کنترل …………………………………………………………………………………………………………………….. 81

 

***فهرست اشكال***

شکل 1-1- مراحل زنجیره‌ی پروتون – پروتون که در خورشید اتفاق می‌افتد.. 6

شکل 1-2- انرژی پتانسیل بر حسب فاصله‏ی دو هسته‏ی باردار که با انرژی مرکز جرم به هم نزدیک می‏شوند. 10

شکل 1-3- نمایی از کپسول هدف 12

یک مطلب دیگر :

 

شکل 1-4- مراحل همجوشی به روش محصورسازی لختی.. 13

شکل1-5- راکتور آینه ای.. 16

شکل 1-6- نمایی از دستگاه چنبرهای پلاسما 17

شکل 1-7- راکتور توکاماک ایتر. 19

شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی.. 19

شکل1-9- شماتیک هندسی راکتور استلاتور. 21

شکل2-1- واکنش پذیری انواع سوخت‌ها 26

شکل2-2- روش‌های گرم کردن پلاسما 36

شکل2‑3: مدارهای لارمور در یک میدان مغناطیسی 44

شکل 2-4:  نمایش میدان مغناطیسی توروئیدی و پولوئیدی و تبدیل چرخشی.. 44

شکل 2-5: سوق‌گیری ذره، در میدان‌های الکتریکی و مغناطیسی متعامد 45

شکل 2-6: حرکت مارپیچی الکترون‏ها و یون‏ها در امتداد خطوط مغناطیسی.. 46

شکل2-7- آهنگ واکنش به صورت تابعی از دما برای واکنش‌های مختلف همجوشی با توزیع سرعت ماکسولی.. 50

شکل2-8- معیار لاوسون nτE برحسب دما T(keV) برای پلاسمای D-3He و D-T با فرض محصورسازی کامل ذرات باردار محصولات عمل   59

شکل4-1- مقایسه تغییرات پارامتر واکنشپذیری برای واکنش همجوشی D-T و D-3He براساس روش باکی.. 83

شکل 4-2- چگالی پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی   86

شکل 4-3- دمای پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی   88

شکل 4-4- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی   89

شکل 4-5- پارامتر β پلاسمای دوتریوم و هلیوم 3 برحسب زمان در حالت ناپایدار برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی   90

شکل 4-6- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی   91

شکل 4-7- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایداربر حسب زمان بدون ناخالصی و با ناخالصی.. 92

شکل 4-8-  توان اهمی  پلاسمای دوتریوم و هلیوم 3  در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی   93

شکل 4-9- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی   94

شکل4-10- چگالی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی   95

شکل 4-11- دمای پلاسمای دوتریوم و هلیوم3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی   95

شکل 4-12- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی   96

شکل 4-13-پارامتر  پلاسمای دوتریوم و هلیوم 3  در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی   97

شکل 4-14- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی   97

شکل 4-15- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت پایداربر حسب زمان بدون ناخالصی و با ناخالصی.. 98

شکل 4-16- توان اهمی  پلاسمای دوتریوم هلیوم 3  در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی   99

شکل 4-17-  توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی   99

 

مقدمه

یکی از مهمترین اهداف بشر در جهت­گیری زمینه­های تحقیقاتی و پژوهشی­، دستیابی به منابع جدید انرژی می‌باشد. در این راستا بشر تلاش کرده است تا با ساخت رآكتورهای هسته­ای، به منبعی از انرژی دست یابد كه بتواند مدت زمان بیشتری  از آن، نسبت به سوخت‌های فسیلی استفاده كند. بطور کلی دو شیوه بنیادی، برای آزادسازی انرژی از یک اتم وجود دارد: شکافت هسته­ای[1] و همجوشی هسته‌ای[2].

مزیت همجوشی هسته‌ای نسبت به شکافت هسته‌ای، فراوانی بسیار زیاد منابع سوختی آن (سوخت اصلی راکتورهای همجوشی دوتریوم می‌باشد که در آب دریاها به وفور وجود دارد. تولید انرژی بالاتر نسبت به روش شکافت هسته‌ای به ازای هر نوکلئون از ماده سوخت (به عنوان مثالی از انرژی تولیدی در یک راکتور همجوشی می‌توان گفت اگر یک گالن از آب دریا را که دارای مقدار کافی دوترون است در واکنش همجوشی استفاده کنیم معادل ۳۰۰ گالن گازوئیل، انرژی بدون آلودگی تولید می‌کند) [1]، عدم وجود معضل پسماندهای هسته‌ای با طول عمر طولانی در روش همجوشی و در نهایت ایمن‌تر بودن راکتورهای همجوشی در هنگام وقوع حوادث احتمالی است که سبب برتری آن بر شکافت هسته­ای گردیده است. سوخت‌های متنوعی در فرایند همجوشی هسته­ای قابل بکارگیری می‌باشد. از آن جمله دوتریوم-تریتیوم(D-T) ، دوتریوم-هلیوم 3 (D-3He)، دوتریوم-دوتریوم (D-D) و تریتیوم-تریتیوم (T-T) می‌باشد. بیشتر تحقیقات انجام شده در فرایندهای همجوشی بر روی سوخت D-T انجام شده است و علت عمده آن نیز بالا بودن سطح مقطع واکنش پذیری این سوخت نسبت به سایر سوخت‌ها در بازه‌ی دمایی عملکردی راکتورها می‌باشد. این سوخت در کنار مزیت ذکر شده و سایر مزیت ها محدودیت­هایی نیز دارد، نظیر پرتوزایی زیاد و گران بودن سوخت تریتیوم که جزو مواد اولیه این واکنش‌ها است. از طرفی دیگر واکنش همجوشی D-3He از میان سایر سوخت‌ها، به دلیل بازدهی بالاتر، تبدیل مستقیم انرژی و کاهش خطرات ناشی از تابش، هزینه تعمیر و نگهداری پایین­تر و… مورد توجه قرار گرفت[2-4]. که این فرایند در راکتورهای متفاوت با شرایط مختلفی قابل انجام است.

لذا با این مقدمه از فرایند همجوشی هسته­ای، در فصل اول به بیان روش­های مختلف همجوشی هسته­ای و سوخت‌های قابل استفاده می‌پردازیم. در فصل دوم سینتیک فرایند همجوشی دوتریوم و هلیوم 3 و پارامترهای موثر بر همجوشی تشریح شده و به بررسی پارامترهای موثر بر همجوشی پلاسمای دوتریوم و هلیوم 3 به روش محصورسازی مغناطیسی پرداخته و فرایند با پارامتر مورد نظر شبیه سازی می­گردد. در فصل چهار برخی از روشهای کنترل ناپایداری در راکتور بیان شده و در ادامه نتایج حاصل از شبیه سازی به کمک پارامترهای ترمودینامیکی مربوط به سوخت دوتریوم و هلیوم 3 با نتایج بدست آمده در سایر مطالعات مقایسه می‌شود.

فصل اول

 

همجوشی هسته­ای

فصل اول-همجوشی هسته‌ای

1-1-واکنش‌های هسته‌ای [3]

تبدیلات خودبخودی یا مصنوعی بعضی از هسته‌ها به هسته دیگر که سبب تغییر ساختار هسته یا تغییر تعداد نوکلئون­ها (ذرات هسته‌ای) می‌گردد، واکنش‌های هسته‌ای نام دارند. همجوشی هسته‌ای و شکافت هسته‌ای، دو روش اصلی انجام واکنش‌های هسته‌ای می‌باشد.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...