مدولهای همدرونبرپوشا و حلقههای همایدهآل راست اصلی |
ابتدا تاریخچهای مختصر از مدولهای درونبر[1]، همدرونبر[2]، درونبرپوشا[3] و همدرونپوشا[4] ارائه
میدهیم. اولین باردرسال1979 توسط خوری[5] مفهومی به نام مدولهایدرونبر معرفی شد. R – مدول M درونبر گفته میشود هرگاه بهازای هر زیرمدول غیرصفرN از M ، داریم :
HomR(M,N)¹ 0. درسالهای بعد مفهوم درونبری توسط مولفان دیگرازجمله ژئو[6]، ریزوی[7]و رومن[8] واخیراً توسطاسمیت9، حقانی و ودادی مورد تحقیق و بررسی قرارگرفته است. سپس در سال2007 مفهومدوگانی از درونبری به نام همدرونبری توسط امینی، ارشاد و شریف ارائه شد.
مدول M همدرونبر گفته میشود هرگاه به ازای هر زیرمدول سرهN از M، داشته باشیم :
HomR(M/N , M) ¹ 0 . سپس مفهوم مدولهای درونبرپوشا توسط قربانی و ودادی در سال 2009 ارائه شد که توسیعی از مفهوم حلقه pri میباشد.
حلقه R، حلقه ایدهآل راست اصلی یا به اختصار حلقه pri ، نامیده میشود هرگاه، هر ایدهآل راست آن اصلی باشد. توسیع این مفهوم در مدولها درونبرپوشایی نامیده شدهاست.
یک R- مدول راست M درونبرپوشا گفته میشود هرگاه به ازای هر زیرمدول غیرصفر N از M همریختی غیرصفرپوشایی از M به N موجود باشد. بنابر قضیه اول یکریختی و با توجه به این
نکته که یک مدول اصلی یکریخت با R/Iاست ، حلقه R یک حلقه pri است اگر و تنها اگر مدول RR درونبرپوشا باشد. دوگان این مطلب بهنام همدرونبرپوشایی توسط قربانی ارائه شدهاست. R – مدول M همدرونبرپوشا گفته میشود هرگاه به ازای هر زیرمدول سره N از M همریختی غیرصفر یک به یکی از M/N به M موجود باشد.
در این پایاننامه مفهوم همدرونبرپوشایی، قضایای مربوطه و دوگان آن تحقیق میشود که برگرفته از مرجع ]3[ میباشد.
1-2. تعاریف وقضایای مقدماتی
در سراسر این پایاننامه حلقهها شرکتپذیر و یکدار میباشند. (تمام مدولها مدول راست می باشند.) درابتدا یادآوری، سپس تعاریف اولیه و بعد قضایای مقدماتی به صورت نکته و لم بیان میشود.
یادآوری
فرضکنید R یک حلقه باشد.R – مدول M را ساده گویند اگر زیرمدول غیربدیهی نداشته باشد. مدول M نیمساده نامیده میشود اگر هر زیرمدولش یک جمعوند آن باشد.
زیرمدول L از M اساسی نامیده میشود و مینویسیم Lvess M هرگاه به ازای هر N £ M اگر L ∩ N = 0 ، آنگاه =0 N . بهطور معادل L vess M اگر و تنها اگر به ازای هر عنصر
ناصفر xÎM ، rÎR موجود باشد بهطوریکه 0 ¹ xrÎ L .
زیرمدول K از M زاید نامیده میشود و مینویسیم K<< M ، هرگاه به ازای هر N £ M اگرK + N = M آنگاه = M N.
فرض کنید M یک R- مدول راست باشد، X زیرمجموعهای از M و Y هم زیرمجموعهای از R ، پوچساز راست X در R با rR (X) و پوچسازچپ Y در M با lM (Y) نمایش داده میشود و تعریف میکنیم :
rR (X) = { r Î R : X r = 0 } lM (Y) ={ m Î M : mY = 0 }
همچنین برای S- مدول چپ N ، rN (Z) وlS (W) بهطور مشابه برای هر Z Í S و هر
W Í N به صورت زیر تعریف میشود :
r N (Z) ={ n Î N : Z n = 0 } l S (W) = { s Î S : sW = 0 }
اگر X = {a}، آنگاه پوچساز راست آن با rR (a ) نشان داده میشود و داریم :
rR (a)= rR (X) و نیز lR (a)= lR (X).
یک مطلب دیگر :
با استفاده از قضیه 2-15 از مرجع [1] نتایج زیر را داریم :
اگر A و B دو زیرمجموعه R – مدول راست M باشند و AÍ B آنگاه rR (B) Í rR (A) . بوضوح Í lM (rR (A)) A و میتوان نتیجه گرفت (A))) Í rR (A) rR (lM (rR . از سوی دیگر با قرار دادن C= rR (A)درC Í lM (rR ©) (بهازای هرC Í R) داریم :
rR (A) Í rR(lM (rR (A)))پس (A))) Í rR (A) rR (lM (rR ؛
در نتیجه(A))) = rR (A) rR (lM (rR .
به طریق مشابه اگر I و J دو زیرمجموعه R باشند و I Í J ، آنگاه lM (J) Í lM (I) . بوضوح
I Í rR (lM (I)) و میتوان نتیجه گرفت : lM (rR (lM (I)))=lM (I) .
اگرM یک R -مدول و U یک کلاس از R – مدولها باشدTr (M ,U ) و Rej (M, U ) به صورت زیر تعریف میشوند که زیرمدولهایی از M میباشند.
Tr (M ,U )=å { Im f | f : ua → M , uaÎ U برای برخی }
Rej (M, U )=∩ {ker f | f : M → ua , uaÎU برای برخی }
اگر S مجموعه تمام R – مدولهای راست ساده باشد، به ازای هر R – مدول M،Soc (MR) بزرگترین زیرمدول نیمساده M است و با توجه به بخش 9 از مرجع [1] به صورت زیر تعریف میشود :
Soc(MR) = Tr (M ,S) = å {K | است M یک زیرمدول ساده از K }
= ∩ { L | L vess M }.
همچنین R – مدول M نیمساده است اگر و تنها اگر soc(MR) = MR .
ضمناً به سادگی دیده میشود R – مدول M نیمساده است اگر و تنها اگر زیرمدول اساسی غیر بدیهی نداشته باشد.
R – مدول M پروژکتیو نامیده میشود هرگاه به ازای هر نمودار از R- همریختیها و R- مدولها به صورت زیرکه سطر آن دقیق باشد ، R- همریختی→ A M موجود باشد بهطوریکه نمودار زیر جابجایی باشد.
1-2-1. R – مدول پروژکتیو M
یا بهطور معادل اگر هر دنباله دقیق کوتاه به صورت A→ B→ M → 0 0 → شکافته شود ، آنگاه M پروژکتیو است.
R – مدول M انژکتیو نامیده میشود هرگاه به ازای هر نمودار از R- همریختیها و R- مدولها به صورت زیرکه سطر آن دقیق باشد، R – همریختی→ M B موجود باشد بهطوریکه نمودار جابجایی باشد.
1-2-2. R – مدول انژکتیو M
همچنین R – مدول M انژکتیو است هرگاه به ازای هرایدهآل راست I از R ، هر همریختی
f : I→ M را بتوان از R به M گسترش داد. (لم بئر)
1-2-3. R – مدول انژکتیوM (لم بئر)
تعاریف و قضایای زیر برای حلقهها و مدولهای راست بیان میشود و بهطور مشابه برای مدولهای چپ نیز برقرار است.
تعریف 1-2-1. حلقه R، خود- انژکتیو راست نامیده میشود، هرگاه RR انژکتیو باشد.
تعریف 1-2-2. حلقه R، حلقه انژکتیو اصلی راست یا به اختصار P- انژکتیو راست نامیده میشود، هرگاه به ازای هر aÎR هر R – همریختی f :aR→ RR را بتوان به R– همریختی
:RR→ RR گسترش داد .
تعریف1-2-3 . مجموعه عناصر منفرد R- مدول راست M را با Z(MR ) نشان میدهیم و تعریف میکنیم :
فرم در حال بارگذاری ...
[پنجشنبه 1399-08-08] [ 12:42:00 ب.ظ ]
|