2-4 فناوری­های تجارت سیار…………………….. 16

2-5 استاندارد­های بی­سیم……………………… 18

2-6 بستر پیاده­سازی کاربرد­های تجارت سیار ………………. 19

2-6-1 زبان­های برنامه­ نویسی موبایل………………………. 22

2-7 جمع­بندی………………………. 23

فصل سوم: زمینه3-1 مقدمه……………………… 25

3-2 زمینه……………………… 26

3-2-1 تعاریف پارامتریک……………………….. 26

3-2-2 تعاریف کلی………………………. 27

3-3 دسته ­بندی اطلاعات زمینه……………………… 28

3-4 آگاهی از زمینه……………………… 31

3-5 طراحی زمینه……………………… 32

3-6 جمع­بندی………………………. 33

فصل چهارم: سیستم­های پیشنهاد­دهنده

4-1 مقدمه……………………… 35

4-2 بررسی عملکرد سیستم­های پیشنهاد­دهنده…………………….. 36

4-2-1 روش­های مبتنی بر محتوا…………………….. 38

4-2-1-1 مشکلات و محدودیت­­های روش­های مبتنی بر محتوا …………. 41

4-2-2 روش­های فیلترسازی مشارکتی………………………. 42

4-2-2-1 مشکلات و محدودیت­­های روش­های فیلتر­سازی مشارکتی………. 46

4-2-3 روش­های ترکیبی………………………. 48

4-3 ارزیابی سیستم­های پیشنهاد­دهنده…………………….. 49

4-4 بسط قابلیت­های سیستم­های پیشنهاد­دهنده…………………….. 51

4-4-1 شرکت­دادن شناختی جامع از کاربران و اقلام در فرآیند پیشنهاد­دهی……. 51

4-4-2 امتیاز­گذاری چند­معیاری………………………. 52

4-4-3 پیشنهاد­دهنده ­های غیر­تداخلی………………………. 53

4-4-4 انعطاف ­پذیری………………………. 53

4-4-5 توسعه شاخص­های ارزیابی………………………. 544-4-6 استفاده از اطلاعات زمینه در پیشنهاد­دهنده­ ها…………………….. 55

برای دیدن جزییات بیشتر و دانلود پایان نامه اینجا کلیک کنیدبرای دیدن جزییات بیشتر و دانلود پایان نامه اینجا کلیک کنید

 

4-4-7 سایر گزینه ­ها برای بسط و توسعه سیستم­های پیشنهاد­دهنده ……. 55

4-5 جمع­بندی………………………. 55

فصل پنجم: روش جدید چند­بعدی برای پیشنهاد­دهی آگاه از زمینه

5-1 مقدمه………………………57

5-2 سیستم­های پیشنهاد­دهنده آگاه­از­زمینه در تجارت سیار……….. 58

5-3 مدل­سازی اطلاعات زمینه……………………… 59

5-4 روش چند­بعدی در سیستم­های توصیه­ گر سیار آگاه از زمینه……. 61

5-5 جمع­بندی………………………. 68

فصل ششم: ارزیابی

6-1 مقدمه……………………… 69

6-2 روش ارزیابی………………………. 69

6-2-1 پیاده­سازی سیستم جمع ­آوری داده…………………….. 70

6-3 پیاده­ سازی روش پیشنهاد­دهی………………………. 72

6-3-1 پیاده­ سازی روش پیشنهاد­دهی دو­بعدی………………………. 73

6-3-2 پیاده­ سازی روش پیشنهاد­دهی چند­بعدی………………………. 78

6-4 جمع­بندی………………………. 82

فصل هفتم: جمع­بندی و راهکار­های آینده

7-1 مقدمه……………………… 84

7-2 راهکار­های آینده ……………………..85

منابع و مآخذ………………………. 87

چکیده:

استفاده از زمینه، به عنوان اطلاعات پویایی که توصیف­گر وضعیت کاربران و اقلام بوده و بر فرایند تصمیم­گیری و انتخاب کاربران تاثیرگذار است، توسط سیستم­های پیشنهاد­دهنده در تجارت سیار، در جهت ارتقاء کیفیت مناسب پیشنهاد­دهی ضروری است. در این تحقیق یک روش جدید چند­بعدی برای پیشنهاد­دهی آگاه از زمینه در تجارت سیار ارائه­ شده است. در این روش اطلاعات کاربران، اقلام، پارامتر های زمینه و ارتباط میان آنها در یک فضای چند­بعدی نمایش ­داده می­شود که به آن مکعب چند­بعدی امتیازات گفته می­شود. در این فضا زمینه­ های مشابه به­ طور جداگانه برای هر کاربر شناسایی می­شوند که این کار با شناسایی الگوهای مصرف متفاوت کاربران در شرایط زمینه­ای مختلف انجام می­شود. با بدست آوردن این اطلاعات، یک فضای جدید دوبعدی ایجاد­شده و پیشنهاد­دهی نهایی با استفاده از یک روش فیلتر­سازی مشارکتی در این فضا انجام می­گیرد. ارزیابی روش از طریق پیاده ­سازی آن در یک سیستم پیشنهاد­دهی محصولات غذایی رستوران­ها شامل پارامتر­های زمینه­ای روز، زمان، آب و هوا و همراه علاوه بر پارامتر­های کاربر و اقلام و مقایسه آن با روش سنتی پیشنهاد­دهی و بدون در­نظر­­گرفتن اطلاعات زمینه انجام گرفته ­است. برای

یک مطلب دیگر :

 

پایان نامه رهن دریایی//اهمیت بیمه در رهن دریایی

 پیاده­سازی روش فیلتر­سازی مشارکتی از شبکه­ های خود­سازمانده استفاده­شده­است. شبکه­ های خود­سازمانده، نوعی از شبکه های عصبی بدون ناظر هستند. مقایسه و ارزیابی نتایج با استفاده از محاسبه شاخص F1 که یکی از شاخص­های استاندارد و پر استفاده برای ارزیابی پیشنهاد­دهنده­ ها است، انجام گرفته ­است. بر اساس این نتایج، روش پیشنهاد­دهی چند­بعدی در حدود شانزده درصد بهبود نسبت به روش سنتی پیشنهاد­دهی را نمایش می­دهد که همین مساله کارایی روش را از نظر کیفیت پیشنهاد­دهی تایید می­کند.

فصل اول: مقدمه

1-1- مقدمه

سیستم­های پیشنهاد­دهنده در تجارت سیار از جمله موضوعات پر­اهمیت سال­های اخیر بوده­اند که با ظهور تکنولوژی­های بی­سیم و تسهیل حرکت تجارت الکترونیکی از محیط­های سیمی به سوی بی­سیم­ مورد توجه قرار­گرفته­اند. تجارت سیار به­معنای انجام فعالیت­های تجارت­الکترونیک از طریق محیط­های بی­سیم، به­طورخاص اینترنت بی­سیم، و وسایل دستی سیار می­باشد که با­ پیدایش تکنولوژی بی­سیم در عرصه اینترنت و استفاده روزافزون از وسایل سیار توجه به آن رو به افزایش است[1,2]. به کاربرد­های تجارت سیار دو خصوصیت ویژه تحرک[1] و دسترسی وسیع[2] نسبت داده­شده­است[1,3] که اولین خصوصیت بر امکان از بین رفتن محدودیت­های مکانی و دومین خصوصیت بر امکان از بین رفتن محدودیت­های زمانی در استفاده کاربران از خدمات این نوع کاربرد­ها تاکید دارد[1,3,4,5]. این­که کاربران برای انجام فعالیت هایی چون بانکداری الکترونیکی یا خرید الکترونیکی محصولات، قادر به جایگزینی وسایلی چون تلفن­های سیار و ­همراه­های شخصی دیجیتال (پی.دی.اِی)[3] به­جای کامپیوتر­های شخصی باشند، تسهیلات زیادی را برای آنها و فرصت­های جدیدی را نیز برای کسب وکار­ها فراهم­­­خواهد­کرد و لزوم توجه به این عرصه را برای محققان نمایان می­سازد[1,3].

اما پیاده­سازی سیستم­های پیشنهاد­دهنده در محیط­های سیار بدون در­نظر­گرفتن پارامتر­های تاثیر­گذار در این محیط چندان مناسب­نخواهد­بود. مجموعه این پارامتر­ها، اطلاعات زمینه را تشکیل می­دهند [6].

عملکرد سیستم­های پیشنهاد­دهنده معرفی منابع مورد نیاز کاربران به آنهاست. این منابع می­توانند مواردی مانند اطلاعات خاص مورد نیاز کاربر و یا کالاها­یی مانند کتاب یا فیلم مورد علاقه یک کاربر را از میان انبوه کالاهایی که کاربر با اطلاعات آن­ها روبروست، در­بر­گیرند[7,8,9]. درسیستم­های پیشنهاد­دهنده، سه مجموعه داده اصلی یعنی مجموعه کاربران ©، مجموعه اقلام قابل توصیه(S) (مانند کتاب، فیلم، موسیقی و غیره) و مجموعه داده­هایی که رابطه میان دو مجموعه قبلی را تعریف می­کنند، وجود­دارند. مجموعهS می­تواند شامل صد­ها، هزار­ها و حتی میلیون­ها کالا در کاربرد­های مختلف بوده و به­طور مشابه مجموعه C نیز می­تواند چنین وضعیتی را داشته باشد. ارتباط میان دو مجموعهC و S مبتنی بر ساختار امتیاز­گذاری است که میزان مفید بودن یا مورد علاقه بودن کالا را برای کاربر مشخص می کند. این ارتباط با تابعی تحت­ عنوان تابع سودمندی، u، به صورت رابطه زیر تعریف می­شود.

که در آن Ratings، مجموعه مرتبی مانند اعداد صحیح غیر­منفی یا مجموعه اعداد حقیقی در بازه­ای معین می­باشد.

در سیستم­های پیشنهاد­دهنده مقادیر u معمولاً فقط بر روی زیر مجموعه­ای از دامنه C×S تعریف­شده­است و نه بر تمام آن و قسمت های نامشخص این دامنه را باید با ­استفاده از داده­های موجود به­صورت تخمینی مشخص نمود. هدف نهایی سیستم­های توصیه­کننده با ارائه پیشنهاد اقلام با بالاترین امتیازات تخمینی به کاربران محقق می­شود به­طوریکه برای هر کاربر ، اقلام با حداکثر میزان سودمندی انتخاب و معرفی می­گردد[7].

تا به امروز روش­های پیشنهاد­دهی زیادی ارائه شده­است که این روش­ها و متدولوژی­ها در دسته­بندی­های زیر قرار می­گیرند[7,9,10]:

– مبتنی بر محتوا[1] : در این گروه از روش­ها، عمل پیشنهاد­دهی با استفاده از یافتن اقلامی انجام می­گیرد که بیشترین تشابه را با اقلامی داشته باشند که در­گذشته مورد­علاقه کاربر بوده­اند. به عبارت دیگر u(c,s)، سودمندی کالای s برای کاربر c، بر اساس کلیه مقادیر موجود u(c,si) هایی که si مشابه به s بوده و si جزء کالاهای مورد علاقه کاربر هستند،­ برآورد می­شود.

– فیلترسازی مشارکتی : در این گروه از روش­ها، عمل پیشنهاد­دهی با استفاده از یافتن اقلامی انجام می­گیرد که مورد علاقه کاربران با سلایق مشابه کاربر بوده­اند. کاربران با سلایق مشابه یعنی کاربرانی که اقلام یکسانی را امتیاز­دهی مشابه کرده باشند. به­عبارت دیگر u (c, s) بر اساس مقادیر موجودu(c,s) بدست می­آید که cj کاربران مشابه با c می­باشند.

– مدل ترکیبی[2]: روش­هایی که دو روش مبتنی­بر­محتوا و فیلتر­سازی مشارکتی را ترکیب می­کنند و به این صورت از مزایای هر دو روش در جهت شناسایی و معرفی کالاها بهره می­گیرند.

در نگاهی دیگر روش­های پیشنهاد­دهی، اعم از مبتنی بر محتوا و فیلتر­سازی مشارکتی به دو دسته روش­های مبتنی بر حافظه[3]و مبتنی بر مدل[4] تقسیم می­شوند. در­مقایسه با الگوریتم­های مبتنی بر حافظه، الگوریتم­های مبتنی بر مدل، با استفاده از روش­های یادگیری ماشین[5] مدلی را با استفاده از مجموعه امتیازات موجود ایجاد کرده و از آن به­منظور پیشگویی امتیازات استفاده می­کنند[7,10,11].

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...