کامپیوتر ارائه یک مدل مبتنی بر خصیصه جهت تحلیل احساس موجود ... |
دانشکده مهندسی
پایان نامه کارشناسی ارشد در رشته مهندسی کامپیوتر (نرم افزار)
عنوان:
ارائه یک مدل مبتنی بر خصیصه جهت تحلیل احساس موجود در نوشتجات
استاد راهنما:
دکتر سید مصطفی فخراحمد
برای رعایت حریم خصوصی نام نگارنده درج نمی شود
تکه هایی از متن به عنوان نمونه :
فصل اول: پیشگفتار
1-1- مقدمه
برخی نویسندگان داده کاوی را به عنوان ابزاری برای جستجو کردن اطلاعات سودمند در حجم زیادی از داده ها تعریف می کنند. برای انجام فرایند داده کاوی با زمینه های گوناگون تحقیقی مواجه میشویم، مانند پایگاه داده، یادگیری ماشین و آمار. پایگاه دادهها برای تحلیل کردن حجم زیادی از دادهها ضروری هستند. یادگیری ماشین، یک ناحیه هوش مصنوعی است که با ایجاد تکنیکهایی امکان یادگیری به وسیله تحلیل مجموعههای دادهای را به کامپیوترها میدهند. تمرکز این روشها روی داده سمبولیک است و با آنالیز دادههای تجربی سر و کار دارد. پایه آن تئوری آماری است. در این تئوری عدم قطعیت و شانس به وسیله تئوری احتمال مدل میشوند. امروزه بسیاری از روشهای آماری در زمینه داده کاوی استفاده میشوند. میتوان گفت که متن کاوی از تکنیکهای بازیابی اطلاعات، استخراج اطلاعات همچنین پردازش کردن زبان طبیعی استفاده میکند و آنها را به الگوریتمها و متدهای داده کاوی، یادگیری ماشین و آماری مرتبط میکند. با توجه به ناحیههای تحقیق گوناگون، بر هر یک از آنها میتوان تعاریف مختلفی از متن کاوی در نظر گرفت در ادامه برخی از این تعاریف بیان میشوند:
متن کاوی = استخراج اطلاعات: در این تعریف متن کاوی متناظر با استخراج اطلاعات در نظر گرفته میشود (استخراج واقعیتها از متن).
متن کاوی = کشف داده متنی: متن کاوی را میتوان به عنوان متدها و الگوریتمهایی از فیلدهای یادگیری ماشین و آماری برای متنها با هدف پیدا کردن الگوهای مفید در نظر گرفت. برای این هدف پیش پردازش کردن متون ضروری است. در بسیاری از روشها، متدهای استخراج اطلاعات، پردازش کردن زبان طبیعی یا برخی پیش پردازشهای ساده برای استخراج داده از متون استفاده میشود، سپس میتوان الگوریتمهای داده کاوی را بر روی دادههای استخراج شده اعمال کرد.
متن کاوی = فرایند استخراج دانش: که در بخش قبلی به طور کامل توضیح داده شده است و در اینجا دیگر بیان نمیشود. در این تحقیق ما بیشتر متن کاوی را به عنوان
یک مطلب دیگر :
این ۳ نکته را قبل از این که تصمیم به سئو سایت خود بگیرید بخوانید
کشف داده متنی در نظر میگیریم و بیشتر بر روی روشهای استخراج الگوهای مفید از متن برای دستهبندی مجموعه های متنی یا استخراج اطلاعات مفید، تمرکز میکنیم.
در دنیای کنونی مشکل کمبود اطلاعات نیست، بلکه مشکل کمبود دانشی است که از این اطلاعات می توان بدست آورد. میلیونها صفحه ی وب، میلیونها کلمه در کتابخانههای دیجیتال و هزاران صفحه اطلاعات در هر شرکت، تنها چند دست از این منابع اطلاعاتی هستند. اما نمیتوان به طور مشخص منبعی از دانش را در این بین معرفی کرد. دانش خلاصهی اطلاعات است و نیز نتیجه گیری و حاصل فکر و تحلیل بر روی اطلاعات.
داده کاوی، یک روش بسیار کارا برای کشف اطلاعات از دادههای ساختیافتهای که در جداول نگهداری میشوند، است. داده کاوی، الگوها را از تراکنشها، استخراج میکند، داده را گروهبندی میکند و نیز آنرا دستهبندی میکند. بوسیلهی داده کاوی میتوانیم به روابط میان اقلام دادهای که پایگاه داده را پر کردهاند، پی ببریم. در عین حال ما با داده کاوی مشکلی داریم و آن عدم وجود عامیت در کاربرد آن است. بیشتر دانش ما اگر به صورت غیر دیجیتال نباشند، کاملاً غیر ساختیافته اند. کتابخانههای دیجیتال، اخبار، کتابهای الکترونیکی، بسیاری از مدارک مالی، مقالات علمی و تقریباً هر چیزی که شما میتوانید در داخل وب بیابید، ساختیافته نیستند. در نتیجه ما نمیتوانیم آموزههای داده کاوی را در مورد آنها به طور مستقیم استفاده کنیم. با این حال، سه روش اساسی در مواجهه با این حجم وسیع از اطلاعات غیر ساختیافته وجود دارد که عبارتند از: بازیابی اطلاعات، استخراج اطلاعات و پردازش زبان طبیعی.
بازیابی اطلاعات: اصولاً مرتبط است با بازیابی مستندات و مدارک. کار معمول دربازیابی اطلاعات این است که با توجه به نیاز مطرح شده از سوی کاربر، مرتبط ترین متون و مستندات و یا در واقع بقچهی کلمه را ازمیان دیگر مستندات یک مجموعه بیرون بکشد. این یافتن دانش نیست بلکه تنها آن بقچهای از کلمات را که به نظرش مرتبطتر به نیاز اطلاعاتی جستجوگر است را به او تحویل میدهد. این روش به واقع دانش و حتی اطلاعاتی را برایمان به ارمغان نمیآورد.
پردازش زبان طبیعی: هدف کلی پردازش زبان طبیعی رسیدن به یک درک بهتر از زبان طبیعی توسط کامپیوترهاست. تکنیکهای مستحکم و سادهای برای پردازش کردن سریع متن به کار میروند. همچنین از تکنیکهای آنالیز زبان شناسی نیز برای پردازش کردن متن استفاده میشود.
استخراج اطلاعات: هدف روشهای استخراج اطلاعات، استخراج اطلاعات خاص از سندهای متنی است. استخراج اطلاعات میتواند به عنوان یک فاز پیش پردازش در متنکاوی بکار برود. استخراج اطلاعات عبارتند از نگاشت کردن متنهای زبان طبیعی (مثلا گزارشها، مقالات journal، روزنامهها، ایمیلها، صفحات وب، هر پایگاه داده متنی و…..) به یک نمایش ساختیافته و از پیش تعریف شده یا قالبهایی که وقتی پر میشوند، منتخبی از اطلاعات کلیدی از متن اصلی را نشان میدهند. یکبار اطلاعات استخراج شده و سپس اطلاعات میتوانند در پایگاه داده برای استفادههای آینده، ذخیره شوند.
2-1- کاربردهای متن کاوی
در این قسمت تعدادی از کاربردهای متنکاوری را بیان خواهیم کرد. امروزه با وجود حجم زیادی از اطلاعات متنی، متنکاوی از جمله روش های تحقیقی-تجاری میباشد که از اهمیت ویژهای برخوردار است. همه شرکتهای تجاری، تولید کنندگان کالاها، ارائه کنندگان خدمات و سیاستمداران قادرند با بهرهگیری از فرایند متنکاوی دانش مفیدی را به عنوان بازخورد از کالا، خدمات و عملکرد خود دریافت کنند. از جمله کاربردهای متن کاوی میتوان به موارد زیر اشاره نمود:
فرم در حال بارگذاری ...
[جمعه 1399-08-09] [ 04:33:00 ب.ظ ]
|