صفحه
- جدول: مقایسه خواص میکرو سیالات با نانو سیالات 4
4-1- جدول: ضریب انتقال حرارت جابجایی و عدد ناسلت در حالت شارثابت 3 وجه
برای سیال آب خالص 44
4-2- جدول: ضریب انتقال حرارت جابجایی و عدد ناسلت در حالت شارثابت 3 وجه
برای نانوسیال باکسر حجمی 1% 45
4-3- جدول: ضریب انتقال حرارت جابجایی و عدد ناسلت در حالت شارثابت 3 وجه
برای نانوسیال باکسر حجمی 2% 46
4-4- جدول: ضریب انتقال حرارت جابجایی و عدد ناسلت در حالت شارثابت 3 وجه
برای نانوسیال باکسر حجمی 4% 47
4-5- جدول: ضریب انتقال حرارت جابجایی و عدد ناسلت بر روی صفحه داغ(وجه کف
با دمای ثابت)، در حالت rq=1 و dp=80 برای سیال آب خالص 58
4-6- جدول: ضریب انتقال حرارت جابجایی و عدد ناسلت بر روی صفحه داغ(وجه کف با دمای ثابت)، در حالت rq=1 و dp=80 برای نانوسیال با کسرحجمی 4% 59
فهرست اشکال
صفحه
2-1- شکل: میکرو گراف نانوسیال روغن ترانسفورماتور- مس در PH=6.3، (a) برای غلظت
2 درصد و (b) برای غلظت 5 درصد 20
2-2- شکل: میکرو گراف نانوسیال روغن آب- مس در PH=6.8، (a) برای غلظت
5 درصد و (b) برای غلظت 5/7 درصد 21
4-1- شکل:مقایسه نحوه تغییرات ضریب انتقال حرارت جابجایی بر روی سطوح شار ثابت 42
4-2- شکل:مقایسه توزیع دما برروی دیواره کانال در راستای طولی به ازای کسرحجمیهای متفاوت 43
4-3- شکل: توزیع سرعت در مقطع عرضی و ناحیه توسعه یافته به ازای کسرحجمیهای متفاوت 49
4-4- شکل: نمودار افت فشار در طول کانال به ازای کسرحجمیهای متفاوت 50
4-5- شکل: نحوه تغییرات عدد ناسلت بر روی سطوح شار ثابت 51
4-6- شکل: کانتور توزیع دما در مقطع عرضی خروجی برای حالت 3 شار ثابت و یکسان 400وات بر مترمربع 52
4-7- شکل: توزیع ضریب انتقال حرارت جابجایی بر روی صفحه داغ و در حالت rq=1 و dp=80 56
4-8- شکل: نمودار توزیع عدد ناسلت بر روی صفحه داغ و در حالت rq=1 و dp=80 57
4-9- شکل: نحوه تغییرات ضریب انتقال حرارت جابجایی میانگین با نسبت شارها 62
4-10- شکل: نحوه تغییرات عدد ناسلت میانگین با نسبت شارها در قطر 20 نانومتر 63
4-11- شکل: نحوه تغییرات ضریب انتقال حرارت جابجایی میانگین با نسبت شارها در قطر 80 نانومتر 64
4-12- شکل: نحوه تغییرات عدد ناسلت میانگین با نسبت شارها در قطر 80 نانومتر 65
4-13 شکل:کانتور توزیع دما در مقطع عرضی خروجی به ازای rq=1 و کسر حجمی
4% نانوسیال 67
4-14- شکل: کانتور توزیع دما در مقطع عرضی خروجی، به ازای rq=.5 و کسر حجمی
4% نانوسیال 68
4-15- شکل: کانتور توزیع دما در مقطع عرضی خروجی، به ازای rq=0 و کسر حجمی
4% نانوسیال 69
فهرست علائم:
dp – قطر ذرات
Cp– گرمای ویژه در فشار ثابت
K- هدایت گرمایی
Nu- عدد ناسلت
P -فشار
Q“– شار گرما
Re-عدد رینولدز
T- دما
X,Y,Z- جهات مختصات
U,V,W- سرعت در سه راستا
چگالی
-کسر حجمی ذرات نانوذرات
– لزجت دینامیکی
f- سیال
w-آب
h- ضریب انتقال گرمای جابجایی
اندیس:
Eff- موثر
Ave- مقدار متوسط
p- ذرات
nf- نانو سیال
Wall-دیواره
Bf- پایش آزاد مولکولی
یک مطلب دیگر :
پایان نامه رایگان با موضوع ارتکاب جرم، اساسنامه رم، مواد مخدر، منشور ملل متحد
in-ورودی
m-متوسط وده سیال
s-متوسط روی دیوار
n-متوسط روی گره
فصل1
مقدمه
1-1-مقدمه
در طول تاریخ بشر از زمان یونان باستان، مردم و به خصوص دانشمندان آن دوره بر این باور بودند که مواد را میتوان آنقدر به اجزای کوچک تقسیم کرد تا به ذراتی رسید که خردناشدنی هستند و این ذرات بنیان مواد را تشکیل میدهند. شاید بتوان دموکریتوس فیلسوف یونانی را پدر فناوری و علوم نانو دانست چرا که حدود 400 سال قبل از میلاد مسیح او اولین کسی بود که واژه اتم را که در زبان یونانی به معنی تقسیم نشدنی است برای توصیف ذرات سازنده مواد بکار برد. در سال 1959، فینمن دانشمند کوانتوم و دارنده جایزه نوبل مطرح نمود اگر دانشمندان ترانزیستور را ساختهاند ما با علم اتمی میتوانیم همین ترانزیستورها را با مقیاس بسیار کوچک بسازیم. او قصد داشت تا با قرار دادن اتم ها در کنار یکدیگر کوچکترین مصنوعات بشری را بسازد. همانطور که گفته شد نظریه کار بر روی سیستم ها در سطح نانو برای اولین بار توسط فینمن استاد کوانتوم بیان گردید. بعدها یک دانشجوی رشته کامپیوتر برای انجام پروژه فارغ التحصیلی خود، دانشمند بزرگ هوش مصنوعی دکتر مینسکی که پدر علم هوش مصنوعی نیزشناخته میشود را به عنوان استاد راهنمای پروژه فارغ التحصیلی برگزید. این دانشجو آقای اریک درکسلر نام داشت که علاقه زیادی به نظریههای فینمن داشت. او سعی در شکوفایی این فرضیات نمود. وی بعد از اخذ درجه استادی علوم کامپیوتر با جمع آوری جوانان کوشا نظریه نانوتکنولوژی را بنا نهاد. اولین مقاله وی در زمینه نانوتکنولوژی در سال 1981 و با موضوع نانوتکنولوژی مولکولی به چاپ رسید. او اولین کسی بود که در سال 1991 از دانشگاه MIT مدرک دکتری نانوتکنولوژی را دریافت نمود. بعدها کشورهای توسعه یافته، برنامه ریزی های گسترده ای را برای فعالیت های تحقیقاتی و صنعتی در زمینه نانو تکنولوژی تدوین نمودند. واژه فناوری نانو اولین بار توسط نوریوتاینگوچی استاد دانشگاه علوم توكیو در سال 1974 بر زبانها جاری شد. او این واژه را برای توصیف ساخت مواد دقیقی كه تلورانس ابعادی آنها در حد نانومتر باشد، به كار برد. در سال 1986 این واژه توسط اریك دركسلر در کتابی تحت عنوان: (موتور آفرینش، آغاز دوران فناوری نانو) بازآفرینی و تعریف مجدد شد. او این واژه را به شكل عمیق تری در رساله دكترای خود مورد بررسی قرار داده و بعدها آنرا در کتابی تحت عنوان: ( نانوسیستمها، ماشین های مولكولی، چگونگی ساخت و محاسبات آنها) توسعه داد. نانو تکنولوژی در ترجمه لفظ به لفظ به معنی تکنولوژی بسیار کوچک(9-10) است. امروزه در صنعت سرمایش و گرمایش، سیالات مبادله کننده حرارت نقش مهمی ایفا میکنند. با توجه به بحران انرژی و مسایل زیستمحیطی، استفاده از تجهیزات اقتصادیتر و سازگارتر با محیطزیست به عنوان یکی از موضوعات مهم علم انتقال گرما تبدیل گشته است. درحال حاضر از خنککنندههایی مانند آب، اتیلن گلیکول، روغن مبدل و … در صنعت استفاده میشود. راندمان پایین مایعات خنککننده متداول خود باعث افزایش مصرف انرژی، حجیم تر شدن تأسیسات، افزایش فضای مورد نیاز برای تجهیزات و هزینههای جانبی دیگر میشود. در سالهای اخیر تحقیقات زیادی جهت بهبود عملکرد حرارتی سیالات خنککننده در جهان صورت گرفته است که نتیجه آن تولید نسل جدیدی از سیالات خنککننده به نام نانو سیالات است.
به طور کلی به مخلوطی از نانو ذرات فلزی یا غیرفلزی با قطر کمتر از ۱۰۰ نانومتر كه در یك سیال پایه معلق شده باشند، نانو سیال اطلاق میشود. نمونههای فراوانی از نانو سیالها در طبیعت وجود دارند. به عنوان مثال خون یك نانو سیال زیستی پیچیده است كه نانو ذرات مختلف در ابعاد مولكولی نقشهای متفاوتی را ایفا میكنند. با توجه به نوع سیال پایه مورد استفاده (آلی یا غیر آلی) و همچنین نوع نانو ذرات مورد نظر، انواع مختلفی از نانو سیالها به وجود میآیند كه میتوان به نانو سیالهای استخراجی، زیستمحیطی (كنترلگر آلودگی محیطزیست)، زیستی و دارویی اشاره كرد. نانو سیالها جنبههای ویژهای دارند كه آنها را كاملاً از مخلوط سیالات دو فازی كه در آنها ذرات در ابعاد میكرو یا میلیمتر هستند، متمایز میکنند [۱]. مخلوط سیالات دو فازی مرسوم به دلیل درشتتر بودن ذرات، باعث انسداد كانالهای جریان میشوند. علاوه بر آن سرعت تهنشینی ذرات در آنها بالاتر بوده و افت فشار بیشتری را ایجاد میكنند. خوردگی خطوط لوله نیز در این موارد بسیار مشاهده میشود. قدرت مورد نیاز برای پمپ كردن این سیالات بیشتر است. حال آنكه در نانو سیالها به دلیل حركت براونی و نیز بر هم کنشهای بین ذرات و سطح بالا این آثار كاهش مییابد [۲]. این نتایج در جدول (۱-۱) نشان داده شده است [۳]. اولین بار چوی و ایستمن [۴] در آزمایشگاه آرگون[1] در ایالاتمتحده نانو سیالات را تولید کرد. بعد از او محققین زیادی در مورد خواص نانو سیالات به تحقیق و پژوهش پرداختند. طبق تحقیقات صورت گرفته عوامل گوناگونی همچون سایز، جنس، شکل و غلظت ذره، دما، نوع سیال پایه، نوع رژیم جریان (آرام یا متلاطم بودن)، ترکیبات نگهدارنده نانو سیال و بسیاری از عوامل دیگر در تعیین خواص نانو سیال و میزان انتقال حرارت آنها موثرند. تاکنون رابطه دقیق و جامعی برای پیشبینی و تعیین ویژگیهای فیزیکی نانوسیالات به دست نیامده است و روابط تجربی موجود از نانو سیالی به نانو سیال دیگر، از غلظتی به غلظت دیگر و حتی از سایز ذرهای به سایز ذره دیگر از همان جنس ذره، متفاوت میباشد. به عنوان مثال انتخاب نانو ذرات با ضریب هدایت بالاتر، مثلاً مس به جای اکسید آلومینیم موجب افزایش انتقال حرارت در نانو سیال میگردد.
جدول (1-1): مقایسه خواص میکرو سیالات با نانو سیالات
خواص |
ذرات با اندازه میکرومتر |
ذرات با اندازه نانومتر |
پایداری |
ته نشین میشود، پایدار نیست |
پایدار(به صورت سوسپانسیون باقی میماند) |
نسبت سطح به حجم |
یک |
حدود هزار |
هدایت حرارتی (در درصد حجمی یکسان) |
پایین |
بالا |
مسدود کردن میکرو کانالها |
بله |
خیر |
فرسایش |
دارد |
ندارد |
موضوعات: بدون موضوع
لینک ثابت