1-2-2-5 فعال­سازی با حلال. 8
1-3 الکترودهای اصلاح­شده 8
1-3-1الكترودهای اصلاح­شده شیمیایی(CME) 8
1-3-2 تهیه الکترودهای اصلاح شده 10
عنوان                                      صفحه
1-3-3 انواع روش­های شیمیایی اصلاح سطح الکترودها 10
1-3-3-1اصلاح الکترود توسط ترکیبات نانوساختار 10
1-3-3-2 اصلاح الکترودها توسط تک لایه­های خود انباشته. 10
1-3-3-3 اصلاح سطح الکترودها توسط روش سل- ژل. 12
1-3-3-4 اصلاح الکترودها توسط مواد پلیمری.. 12
1-4 فناوری نانو. 14
1-5 نانوساختارها 14
1-5-1 نانوذرات.. 14
1-5-2 عملکرد نانوذرات در الکتروشیمی.. 15
1-5-2-1 تثبیت زیستمولکول ها در سطح الکترود. 16
1-5-2-2 کاتالیز واکنش­های الکتروشیمیایی. 16
1-5-2-3 تسریع انتقال الکترون. 16
1-5-2-4 نشانه‌گذاری زیست­مولکول­ها 16
1-5-2-5 نانوذرات به عنوان واکنش­گر عمل می­کنند. 16
1-5-3 سیستم دوفلزی-آلیاژی نانوذرات.. 18
1-6 حسگرها 19
1-6-1 حسگرهای الکتروشیمیایی. 20
1-6-2 خصوصیات حسگرها 21
1-7 گرافن: 21
1-7-1 گرافن تقویت شده 23
1-8 پلاتین.. 23
عنوان                           صفحه  1-8-1الکتروکاتالیست آلیاژی پلاتین. 24
1-9 پیل سوختی.. 25
1-9-1 مزایای پیل سوختی. 27
1-9-2 انواع پیل های سوختی. 27
1-9-3 غشاهای تبادل پروتون بری کاربرد در پیل سوختی.. 29
1-10 اهداف پروژه حاضر. 31
فصل دوم: مواد و تجهیزات مورد استفاده، سنتز و شناسایی نانوکامپوزیت­ها و جزئیات روش­ها وآزمایش­های انجام شده

پایان نامه

 

2-1 مواد شیمیایی مورد استفاده 33
2-2- دستگاه­های مورد استفاده 34
2-3- سنتز Pt/N-Gr 34
2-4- روش تهیه الکترودهای کربن شیشه­ای اصلاح­شده با گرافن دوپه­شده با نیتروژن و پلاتین (Pt/N-Gr) 36
2-4-1- آماده سازی الکترود. 36
2-4-2- اصلاح الکترود GC با گرافن. 36
2-5- سنتزنانوذرات دوتایی Pt-Fe. 37
2-5-1 اصلاح الکترود GC بانانوذرات Pt-Fe. 39
فصل سوم: بحث و نتیجه گیری
3-1 بررسی رفتار الكتروشیمیایی هیدرازین روی الکترود کربن شیشه­ا­ی اصلاح­شده با گرافن دوپه­شده با نیتروژن و پلاتین. 40
3-1-1-مقدمه. 40
عنوان       صفحه 3-1-2 بهبود پاسخ الکترود کربن شیشه­ای توسط اصلاح با نانو کامپوزیت Pt/N-Gr 41
3-1-3 بررسی اثر غلظت هیدرازین در رفتار الکتروکاتالیزوری الکترود اصلاح­شده با نانوکامپوزیت Pt/N-Gr 42
3-1-4  محاسبه حدتشخیص، حساسیت، و محدوده خطی الکترد اصلاح­شده با استفاده ازروش آمپرومتری.. 43
3-1-5 بررسی میزان پایداری پاسخ الکتروکاتالیزوری الکترود GC-Pt/N-Gr برای اکسیداسیون هیدرازین. 46
3-1-6 بررسی اثر سرعت روبش پتانسیل. 47
3-1-7 بررسی انتخاب­پذیری الکترود اصلاح­شده 48
3-1-8 کاربرد تجزیه­ای الکترود. 49
3-1-9 نتیجه­گیری.. 52

یک مطلب دیگر :

 

بخش دوم: طراحی پیل زیست سوختی گلوکز/اکسیژن. 53
3-2-1 اکسیداسیون الکتروشیمیایی گلوکز با استفاده از الکترود کربن شیشه­ای اصلاح­شده با نانوذرات  Fe-Pt 53
3-2-2 به کارگیری نانوکامپوزیت Pt/N-Gr برای احیای اکسیژن. 53
3-2-3 به کارگیری الکترود کربن شیشه­ای اصلاح­شده با نانوذرات Fe-Pt به عنوان آند پیل زیستی سوختی 54
3-2-3-1 بهبود پاسخ الکترود کربن شیشه­ای اصلاح با نانو ذرات  Fe-Pt نسبت به الکترود کربن شیشه­ای اصلاح­شده با کربن-پلاتین تجاری برای اکسیداسیون گلوکز. 54
3-2-3-2 بررسی اثر غلظت گلوکز در رفتار الکتروکاتالیزوری الکترود اصلاح­شده با نانو ذرات  Fe-P. 55
3-2-3-3 محاسبه سطح فعال آند (الکترود کربن شیشه­ای اصلاح­شده با نانوذرات Fe-Pt) 56
3-2-3-4 بررسی پایداری الکترود اصلاح­شده با نانوذرات Fe-Pt 57
3-2-3-5 بررسی اثر مزاحمت اکسیژن برای اندازه­گیری گلوکز در آند. 58
3-2-4 به­کارگیری الکترود کربن شیشه­ای اصلاح­شده با/N-Gr  Pt به عنوان کاتد پیل                  زیست­ سوختی       58
3-2-4-1 بهبود پاسخ الکترود کربن شیشه­ای اصلاح­شده با نانو کامپوزیت  Pt/N-Gr نسبت به الکترود کربن شیشه­ای اصلاح­شده با کربن-پلاتین تجاری برای احیای اکسیژن. 58
3-2-4-2 محاسبه سطح فعال کاتد (الکترود کربن شیشه­ای اصلاح­شده با Pt/N-Gr) 60
3-2-4-3 بررسی مکانیسم احیای الکتروکاتالیزوری اکسیژن به روش ولتامتری هیدرودینامیک.. 61
3-2-4-4 بررسی پایداری الکترود اصلاح­شده با Pt/N-Gr 62
3-2-5کاربرد آند و کاتد طراحی شده جهت ساخت پیل زیست­سوختی گلوکز/ اکسیژن. 63
3-2-5-2 آماده سازی غشای نافیونی. 64
3-2-5-3 نتایج حاصل از بستن پیل گلوکز/ اکسیژن. 64
3-2-5-4 نتیجه­گیری.. 67
1 الکتروشیمی تجزیه
الکتروشیمی تجزیه­ای، شاخه­ای از مجموعه وسیع شیمی تجزیه است که راه­های تجزیه­ای مبتنی بر فرآیندهای الکتروشیمیایی را مورد بررسی قرار می­دهد. برگزیدگی واکنش­های الکتروشیمیایی و دقت بالایی که با آن می­توان پارامترهای مرتبط با این واکنش­ها را اندازه گرفت، روش­های الکتروشیمیایی تجزیه را در ردیف حساس­ترین و انتخابی­ترین روش­های تجزیه­ای تشخیص و تعیین مقدار قرار می­دهد.
یکی از ویژگی­های کم­نظیر روش­های الکتروشیمیایی تجزیه­ای، گسترش دامنه کارایی آن­هاست، به طوریکه علاوه بر امکان کاربرد آن­ها به صورت روش­های مستقل، می­توان از آن­ها برای آشکارسازی نتایج بسیاری از پدیده­های فیزیکی و شیمیایی استفاده کرد. در حال حاضر، محدوده الکتروشیمی تجزیه از معدود روش­های کلاسیک نظیر پتانسیومتری، آمپرومتری، پلاروگرافی، هدایت­سنجی و ترسیب الکتریکی فراتر رفته و روش­های جدیدتری که ثمره تلفیق اطلاعات الکتروشیمیایی با تکنولوژی مدرن الکترونیک است، به میان آمده­اند [1]. از نظر تاریخی کار در زمینه ولتامتری با کشف پلاروگرافی توسط شیمیدان اهل چک­اسلواکی، ژروسلاو هیروسکی [1] در اوایل دهه 1920 آغاز شد. وی با انجام ولتامتری تجزیه­ای درسطح الکترود جیوه)پلاروگرافی) در این زمینه جایزه نوبل را دریافت کرد [2].  در سال 1964 طبقه­بندی جالبی توسط نیکولسن[2] و شاین[3] با استفاده از نتایج حاصل از ولتامتری چرخه­ای[4] ( (CVو روبش خطی[5] (LSV) روی واکنش­های الکترودی صورت گرفت، به علاوه آن­ها ولتامتری چرخه­ای را شبیه­سازی[6] کردند[3]. در سال1950 ولتامتری به صورت یک روش کاملا پیشرفته به نظر می­آمد. به هر حال دهه­ی 1955 تا 1965 شاهد بروز چندین روش اصلاحی اساسی از روش اولیه بود که به کمک آن­ها بر بسیاری از محدودیت­های روش­های اولیه غلبه شد. تقویت­کننده­های عملیاتی با قیمت کم، ابداع دستگاه­های تجاری نسبتا ارزان را ممکن ساخت، که از این اصلاحات مهم بهره می­گرفتند.
1-1-1 اهمیت و مزایای روش­های الکتروشیمیایی
روش­های الکتروشیمیایی در مقایسه با روش­های شیمیایی دارای مزیت­های ویژه­ای هستند که در زیر برخی از این مزایا بیان شده است:

  1. یک روش الکتروشیمیایی می­تواند انتخابی باشد، در انجام فرآیند الکترولیز با اعمال یک مقدار پتانسیل معین به الکترود مورد نظر می­توان واکنش اکسیداسیون و احیا را تا مرحله­ی مورد نظر پیش برد. این در حالی است که در واکنش­های شیمیایی، یافتن یک اکسیدکننده و یا­کاهنده خاصی که دارای نقش انتخابی باشد و بتواند واکنش اکسیداسیون و احیا را تا مرحله­ی خاصی پیش ببرد مشکل است. به عنوان مثال با اعمال ﭘﺘﺎﻧﺴﯿﻞ 52/0 =E‪ در محیط اسیدی و در سطح الکترود جیوه می­توان نیتروبنزن را به فنیل هیدروکسیل آمین تبدیل کرد.

C6H5NO2 + 4H+ + 4e                               C6H5NHOH + H2O
 حال آنکه اگر کاهش نیتروبنزن به طریق شیمیایی عملی شود، محصول واکنش آنیلین می­باشد.

  1. محصولات واکنش­های الکتروشیمیایی اغلب خالص­ترند و بنابراین نیاز کمتری به انجام مراحل خالص­سازی دارند.
  2. انتخاب یک محیط مناسب برای انجام الکترولیز خیلی آسان­تر از روش­های شیمیایی است. به دلیل این­که با استفاده از اکسید کننده­ها و یا کاهنده­ها به عنوان معرف در روش­های شیمیایی مسئله انحلال این مواد در محیط نیز مطرح می­شود.
  3. از نظر زیست محیطی، واکنش­های الکتروشیمیایی تحت شرایط ملایم نظیر دمای اتاق و فشار اتمسفر با استفاده از جریان الکتریکی انجام می­شوند.

در مقایسه با روش­های طیف­سنجی، دستگاه­های مورد استفاده در الکتروشیمی ارزان­تر هستند. یک آنالیز طیف­سنجی تنها در مورد ملکول­هایی می­تواند انجام شود که دارای گروه­های رنگ­ساز باشند، در غیر این صورت باید مراحل زمان­بر و پیچیده مشتق­سازی آنالیت را طی کرد. برخلاف روش­های طیف­سنجی که اغلب در محلول­های همگن انجام می­شود، واکنش­های الکتروشیمیایی در حد فاصل الکترود-محلول انجام می­شوند. در اغلب روش­های طیف­سنجی نیاز به تهیه محلول­های شفاف و همگن است درحالی که روش­های الکتروشیمیایی در محلول­های کدر نیز قابل اجرا هستند.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...