ساخت غشا اولترا فیلتراسیون پلی اکریلونیتریل حاوی نانو ذرات TiO2 به منظور جداسازی ... |
2-3 اصلاح سطح غشا با روش عملیات حرارتی و هیدرولیز………… 51
2-4 ترکیب غشا با نانو ذرات تیتانیوم دی اکسید…………………… 52
2-4-1 خود آرایی نانو ذرات تیتانیوم دی اکسید بر روی سطح غشا پلیاکریلونیتریل…..53
2-4-2 مخلوط کردن نانوذرات تیتانیومدیاکسید در محلول پلیمری……….53
2-5 ارزیابی عملکرد غشا……………………………. 54
2-6 شار آب خالص……………………………… 57
2-7 احتباس……………………………… 58
2-8 آستانه شکست و محاسبه اندازه حفرات…………………………….. 59
2-8-1 اندازهگیری غلظت پلیاتیلنگلایكول…………………………….. 61
2-9 بررسی میزان گرفتگی غشا……………………………. 62
2- 10 بررسی مورفولوژی غشا …………………………….63
2-10-1 بررسی مورفولوژی غشای تهیه شده با میکروسکوپ الکترونی روبشی(SEM)…….64
2-10-2 بررسی آبدوستی غشا با آنالیز زاویه تماس……………… 65
2-7-3 بررسی ساختار شیمیایی غشا……………………………. 66
2-10-4 طیف سنجی پراش انرژی پرتو ایکس(EDX)……………… 67
گفتار سوم: بحث و نتیجه گیری…………………………….. 69
مقدمه …………………………….70
3-1 ساخت غشا پلی اکریلو نیتریل…………………………….. 70
3-2 اصلاح شیمیایی غشا……………………………. 73
3-3 اصلاح حرارتی غشاهای پلی اکریلو نیتریل…………………….. 76
3-4 بررسی عملكرد و ساختار غشا اصلاح شده حرارتی…………… 76
3-5 اصلاح غشا با استفاده از نانوذرات…………………………….. 80
3-5-1 اثر خودآرایی نانوذرات تیتانیوم دیاکسید بروی سطح غشا…….. 81
3-5-2 اثر مخلوط کردن نانوذرات تیتانیوم دیاکسید در محلول پلیمری…….. 83
3-6 مقایسه بین دو روش افزودن نانوذرات…………………………….. 85
3-7 آنالیز میکروسکوپ الکترونی پویشی از سطح غشا……………..86
3-8 آنالیز پراش انرژی پرتو ایکس(EDX)……………………………. 90
3-9 اندازه گیری آستانه شکست……………………………… 93
3-10 بررسی آبدوستی سطح غشا……………………………. 95
3-8 بررسی گرفتگی غشا……………………………. 97
گفتار چهارم: نتیجه گیری و پیشنهادات…………………………….. 101
4-1 نتیجه گیری…………………………….. 102
4- 2 پیشنهادات…………………………….. 104
چکیده:
هدف از انجام این مطالعه، جداسازی پلیاکریلآمید کاتیونی از پساب کارخانه زغالشویی پروده طبس با استفاده از فرآیند فیلتراسیون غشای پلیمری میباشد. غشا اولیه با استفاده از پلی اکریلونیتریل (PAN) توسط فرآیند وارونگی فاز تهیه گردید و در ادامه با استفاده از عملیات هیدرولیز بهعنوان اصلاح شیمیایی و عملیات حرارتی بهعنوان اصلاح فیزیکی برای حداکثر جداسازی پساب آماده گردیدند. همچنین از نانو ذرات TiO2 به دو روش خودآرایی و مخلوط کردن با محلول پلیمری به منظور افزایش خواص ضد گرفتگی سطح غشا استفاده شده است. به منظور بررسی عملکرد غشا محلول خوراک ppm10 از پلیاکریلآمید کاتیونی مطابق با خوراک کارخانه تهیه و در فشار 3 بار و
یک مطلب دیگر :
دمای 25 درجه سلسیوس میزان احتباس و شار عبوری اندازهگیری گردید. با توجه به آنچه که مطلوب این مطالعه بودهاست، در کنار احتباس 98% از پلیاکریل آمید دستیابی به شارهای متفاوتی با توجه به نوع غشا به کار رفته امکان پذیر بودهاست. میزان شار در غشاهای فاقد نانوذرات در حدود L/m2.hr 4/125 بودهاست درحالیکه برای غشا ترکیب شده با نانوذرات TiO2 در روش خودآرایی این مقدار در حدود 45% و برای روش مخلوط کردن در محلول پلیمری 32% بهبود داشته است. آزمایشهای گرفتگی غشاهای ساخته شده نشان میدهد غشاهای حاوی نانوذرات TiO2 به نسبت غشاهای معمولی از گرفتگی کمتری برخوردار هستند. آنالیزهای FT-IR گروههای شیمیایی موجود در سطح غشا قبل و بعد از انجام عملیات هیدرولیز را نشان میدهند. تصاویر SEMسطحی تغییر قابل محسوسی در مورفولوژی سطح غشاها بعد از اصلاح در حضور نانوذرات TiO2 نشان نمیدهد در حالیکه آنالیز EDXحضور نانوذرات TiO2 را تایید میکند. آنالیز زاویه تماس نشان میدهد که آبدوستی سطح غشا در حضور نانوذرات TiO2 با روش خودآرایی بیشتر از روش مخلوط کردن افزایش نشان میدهد.
گفتار اول: مطالعه بر روش های جداسازی پلیاکریلآمید و آشنایی با فرآیندهای غشایی
مقدمه:
با توجه به گسترش روزافزون بحران کمبود آب مورد نیاز نه فقط برای مصارف خانگی و کشاورزی که در بخش صنعت، تلاشها برای تصفیه و بازگرداندن بخش قابل توجهی از آب مصرفی به چرخه مصرف در حال افزایش است. میزان مصرف آب در بخش صنعت با توجه به گزارش وزارت نیروی جمهوری اسلامی ایران، در حدود 5/1 درصد کل آب مصرفی کشور معادل 5/1 ملیارد متر مکعب را به خود اختصاص داده است. لذا با توسعه علم و فناوری نظیر فرایندهای غشایی میتوان بخش عظیمی از این آب را به چرخه صنعت بازگرداند. فرآیندهای غشایی مانند نانوفیلتراسیون [1] (NF) ، اولترافیلتراسیون[2] (UF) و اسمز معکوس[3] (RO) به طور فزایندهایی در احیا و استفاده مجدد از پساب و تصفیه آب آشامیدنی استفاده میشوند]1.[
1-1- معرفی کارخانه زغالشویی
این کارخانه در فاز اول به منظور تامین کک مورد نیاز برای کارخانه ذوب آهن اصفهان طراحی و اجرا گردیدهاست. ظرفیت اسمی این کارخانه که بزرگترین کارخانهی زغالشویی کشور میباشد 300 تن در ساعت است. زغال سنگ پس از استخراج از معادن پروده که حدوداً شامل 50 درصد باطله است جهت خالص سازی و جداسازی از باطله به کارخانه زغالشویی منتقل میشود. سپس زغال سنگ وارد روتاری بریکر شده تا عمل دانهبندی و ریزکردن ابعاد زغال سنگ انجام شود. پس ازعملیات مختلفی که بر روی زغال به منظور دانهبندی و خاکستر کردن آن انجام میشود، مهم ترین قسمت کارخانه زغالشویی یعنی بخش فلوتاسیون مورد استفاده قرار میگیرد.
هدف از بخش فلوتاسیون تولید زغال کنسانتره در ابعاد بسیار ریز (خاکستر) میباشد. در این بخش زغال دانهبندی شده و ریز با آب مخلوط میشود. فرایند فلوتاسیون در واقع جداسازی جامد از جامد ( جداکردن زغال کک شو از باطله) در اثر اختلاف در دانسیته ذرات است]2.[
شش سلول در قسمت فلوتاسیون فعال است که این سلولها دارای قطر4 متر و ارتفاع 8 متر هستند و ظرفیت آنها 300 تن در ساعت است. جریان خوراک اولیه (مخلوط آب و زغال) از ارتفاع 2 متری بالای سلول وارد آن شده، سپس فروتر یا همان کف ساز از ارتفاع 5/1 متری کف سلول وارد میشود. علت افزودن کف ساز در واقع ایجاد حباب است، که باعث میشود که ذرات با دانسیته کمتر که همان زغال مرغوب است، روی سطح حبابها قرار گیرند و از بالای سلول به صورت سر ریز خارج شوند و باطله نیز به علت دانسیته بیشتر در کف سلول باقیمانده، و خارج میشود.
زغال فرآوری شده به سمت فیلتر پرسی هدایت شده و آبگیری میشود و پساپ تولیدی راهی تیکنر میشود. همچنین باطله خروجی از فلوتاسیون به همراه پساب نیز وارد تیکنر میشود. تیکنر قسمتی از کارخانه جهت بازیابی آب است که استخری به حجم3 m5400 را شامل میشود. در مرحله آخر به دلیل وجود ذرات معلق در پساب، از منعقد کنندهها به منظور ته نشینی -تحت عنوان فرآیند انعقاد ولخته سازی- و استفاده مجدد از آب استفاده میشود.
2-1- معرفی فرآیند انعقاد و لخته سازی
انعقاد و لخته سازی[1] یک واحد فیزیک و شیمیایی در فرآیند پیش تصفیه[2] میباشد. در این فرآیند ذرات ریز معلق توسط منعقد کنندهها[3] به ذرات درشت تبدیل و ته نشین میشوند. برای این فرآیند میتوان از مواد آلی یا معدنی و مواد با جرم ملکولی بالا مانند پلیمرها استفاده کرد. فلوکولاسیون نوعی فرایند انعقاد و لخته سازی است که از پلیمرها به منظور ته نشین کردن ذرات معلق استفاده میکند، که خود به سه دسته کاتیونی، آنیونی و خنثی تقسیم میشود. پلیمرهای کاتیونی کاربرد فراوانی در تصفیه پسابهای حاوی ذرات معدنی دارند. بیشتر پلیمرهای مورد استفاده در فرآیند فلوکولاسیون پلیمرهای خطی میباشند]3-11[.
برای سوسپانسیونها با غلظت و اندازه ذرات مختلف، پلیمرها با جرم ملکولی متفاوتی استفاده میشوند. مهم ترین عوامل مؤثر در کارایی فرایند انعقاد یونهای موجود در محلول آبی (قدرت یونی آب)، غلظت مواد هیومیک، pH، دمای آب و نوع ماده منعقدکنند هستند. در عملیات انعقاد و لخته سازی، رشد لختهها در چند مرحلهی متوالی رخ می دهد:
– پراکندگی پلیمر در محیط
– نفوذ پلیمر در فصل مشترک جامد – مایع
– جذب پلیمر بر روی سطح مایع برخورد ذرات حامل لختهی جذب شده با ذرهای دیگر
– جذب لخته برروی ذرهی دوم برای ایجاد پل و تشکیل یک میکرو لخته
– رشد میکرو لختهها از طریق برخوردهای موفق و جذب
فرم در حال بارگذاری ...
[جمعه 1399-08-02] [ 11:52:00 ق.ظ ]
|