آموزش مهارت های کاربردی




جستجو



 



1-13-4 تاریخچه فیلوژنی سرده Viola…………………………………..

1- 14 اهداف……………………………………………………………….. 39

فصل دوم: مواد و روش ها

2-1 مطالعات تشریحی……………………………………………………. 41

2-1-1 روش تهیه محلول های رنگ آمیزی……………………………….. 42

2-2 بررسی مورفومتری و آنالیز عددی…………………………………… 44

2-2-1 نمونه برداری………………………………………………………… 44

2-2-2 اندازه گیری و آنالیز………………………………………………….. 45

2-3 مطالعه ی فیلوژنی مولکولی در گونه های Viola…………………..

2-3-1 استخراج DNA ژنومی از گیاه با استفاده از روش CTAB………..

2-3-1-1 روش تهیه بافر CTAB……………………………………………

2- 3 – 1 -2  تعیین غلظت و خلوص DNA……………………………….

2- 4  تکثیر قطعات DNA مورد نظر……………………………………….. 52

2- 4- 1 آغازگر ها………………………………………………………….. 52

2- 4- 2 دستورالعمل واکنش زنجیره ای پلیمراز (PCR)………………… 52

2-4-3 برنامه واکنش PCR برای تکثیر قطعات  DNA مورد مطالعه……… 53

2-4-4 الكتروفورز ژل آگارز………………………………………………….. 53

2-4-5 تخلیص PCR………………………………………………………….

2-4-5-1 تخلیص محصول PCR……………………………………………..

2-4-5-2 تخلیص محصول PCR  از ژل……………………………………… 55

2- 4-6  تعیین توالی قطعات تکثیر یافته و آنالیز آنها……………………. 56

2-4-7 آنالیز فیلوژنتیکی……………………………………………………. 57

2-4-7-2 روش بیشینه صرفه جویی………………………………………. 58

2- 4- 7-3  روش بیشینه احتمال………………………………………….. 58

2- 4-7- 5 مقایسه دو روش آنالیزی MP  و ML…………………………..

2- 4-7- 6 نحوه ی ترکیب دو مجموعه اطلاعاتی trnL-F و ITS………..

 

فصل سوم: نتایج

3-1 کلید شناسایی گونه های Viola در شمال ایران…………………. 62

3-2 شرح گونه های بخشه Viola……………………………………….

3-3 مطالعات تشریحی…………………………………………………… 82

3-4 آنالیز عددی……………………………………………………………. 98

3-4-1 زیربخشه Viola……………………………………………………..

3-4-2 زیربخشه Rostratae………………………………………………

3-5 مطالعات ملکولی…………………………………………………….. 103

3-5-2 تعیین توالی قطعه تکثیر یافته…………………………………….. 105

3-5-3 آنالیز فیلوژنتیکی توالی ITS……………………………………….

3-5-3-1  آنالیزماکسیمم پارسیمونی داده های مولکولی nrDNA ITS……….

3-5-3-2 آنالیزماکسیمم پارسیمونی داده های trnL-F cpDNA……..

3-5-3-3  آنالیز Maximum Liklihood داده های nrDNA ITS…………

3-5-3-4 آنالیز Maximum Liklihood داده های trnL-F cpDNA………

3-5-3-5 آنالیزماکسیمم پارسیمونی داده های ترکیبی nrDNA ITS  وcpDNA trnL-F

3-5-3-6 آنالیز Maximum Liklihood داده های ترکیبی nrDNA ITS  وcpDNA trnL-F

فصل چهارم: بحث

4-1 مطالعات تاکسونومیکی…………………………………………. 124

4-2 مطالعات آناتومی…………………………………………………. 127

4-3 تاکسونومی عددی……………………………………………….. 129

4-4 مطالعات ملکولی…………………………………………………. 130

4-5 پیشنهادات………………………………………………………… 134

فصل پنجم: منابع

منابع…………………………………………………………………….. 136

چکیده:

در این مطالعه، بررسی بیوسیستماتیکی بخشه Viola از سرده Viola در شمال ایران از جنبه های مرفولوژیکی، آناتومیکی و ملکولی انجام شد. آنالیز عددی برای تاکسونهای جمع آوری شده از ایران متعلق به دو زیربخشه Viola و Rostratae به صورت جداگانه انجام گرفت و بر اساس نتایج حاصل از این آنالیز، گونه های هر کدام از زیربخشه های Viola و Rostratae از یکدیگر متمایز شدند. به منظور انجام مطالعات آناتومیکی، بخش های ریشه، ساقه رونده، برگ، دمبرگ و دمگل مورد بررسی قرار گرفت. نتایج نشان داد که صفات مورد بررسی در تمایز زیربخشه ها و گونه ها  مفید هستند. بر این اساس دو گونه V. alba ssp. alba و V. sintenisii، در برشهای ریشه در وجود یا عدم وجود ناحیه مغز و تعداد لایه های پارانشیمی زیر آوند چوب از یکدیگر متمایز گردیدند. دو گونه نزدیک V. caspia و V. reichenbachiana نیز در برش های ریشه، در وجود یا عدم وجود مغز و تراکم کریستالی از یکدیگر قابل تمایز بودند. در بررسی مولکولی، از دو نشانگر، شامل nrDNA ITS و cpDNA trnL-F برای تعیین حدود گونه ها استفاده شد. بر این اساس، گونه های این بخشه به خوبی از یکدیگر متمایز شدند. به منظور بازسازی روابط فیلوژنی بخشه Viola و بررسی میزان خویشاوندی این بخشه با سایر بخشه های سرده Viola، داده های مولکولی با استفاده از روش بیشینه صرفه جویی تعبیه شده در نرم افزار PAUP* 4.b10 و روش بیشینه احتمال در نرم افزار TreeFinder (Version Of March 2011) آنالیز شدند. درخت مطلق مرکزی با بیشترین پارسیمونی برای داده های ترکیبی ITS و trnL-F، یک کلاد با ارزش حمایتی 100% را برای بخشه Viola بادو زیر بخشه Viola و  Rostratae نشان می دهد. نتایج حاصل از این مطالعه، حضور 6 گونه و 3 زیر گونه را تایید کرده است. نتایـج به دست آمده نشان داد که V. alba ssp. alba و V. sintenisii به صورت سیمپاتریک در شمال ایران پراکنش دارد.

مقدمه:

1-1- تاریخچه مطالعات سیستماتیکی سرده Viola 

 

یک مطلب دیگر :

 

سرده .Viola L. با دارا بودن 600-525 گونه همـی کریپتوفیت[1]، کامـوفیت[2] و فانـروفیت[3] بزرگتـرین سـرده خانـواده Violaceae اسـت Clausen, 1964; Ballard, 1996)). ایـن سـرده در سـال 1753 توسـط لینــه[4] معـرفی شد و نمـونه تیپ  این سـرده، Vodorata است که در سال 1982 نمونه لکتوتیپ آن توسط Haesler جمع آوری و گزارش شد (Marcussen, 1998).

این سرده در سال 1823 توسط گیاهشناس سوئیسی De Candolle به بخشه ها و زیر بخشه های مختلف طبقه بندی شد (Chatterjee & Sharma, 1987). در سده گذشته، مونوگرافر آلمانی، Becker، اولین  تاکسونومیستی بود که این سرده را در سطح جهان بررسی کرد و تعداد بسیار زیادی گونه جدیـد و تقسیم بندیهای تاکسونومیکـی جدیدی معرفی کرد (Becker, 1916, 1917a, 1917b, 1918, 1922, 1923a, 1923b, 1923c, 1923d, 1924, 1925a). مطالعات وی در ایـن زمینـه (1925b)، اولیـن ارزیابـی جامـع سرده Viola را شامـل شناسـایی 14 بخشه و تقـریباً دو برابر گروه های زیر بخشـه ای در جهـان، بوجـود آورد، بزرگتـرین بخشـه آن Nomimium بود که بعدها به نام بخشـه Viola تغییـر پیـدا کرد. سپس Clausen (1927, 1929, 1964) بازبینی های تاکسونومیکی عمده ای بر طبقه بندی Becker انجام داد که اغلب آنها توسط متخصصان بعدی پذیرفته شد، در حالیکه قسمتی هنوز مبهم باقی مانده است. متخصصان دیگر تغییرات دیگری اعمال کردند که عمدتاً شامل نامگذاری های اولیه بود (Bamford & Gershoy, 1930; Gershoy, 1934; Yuzepchuk & Klokov, 1974). Clausen گروه های بدون ساقه اصلی با عدد کروموزومی پایه x=12 یا مشتقات آنیوپلوئیدی را در بخشه Plagiostigma قرار داد و گروه های با عدد پایه کروموزومی x=10 را در بخشه Nomimium (بخشه نامعتبر Rostellatae در طبقه بندی خودش) قرار داد که اکنون به میزان زیادی کاهش پیدا کرده است. وی همچنین گروه هایی که به طور برجسته دارای ساقه اصلی و گلهای زرد بودند را از سری ها و زیربخشه ها به بخشه Chamaemelanium ارتقاء داد و بخشه Nuttallianae را به تعدادی زیر بخشه تقسیم کرد. اگرچه برخی متخصصان بخشه Dischidium در طبقه بندی Becker را حفظ کردند و زیر بخشه Orbiculares را در بخشه Nomimium ابقا کردند، Clausen بخشه Dischidium و Orbiculares را ادغام کرد و آنها را در بخشه Chamaemelanium، زیر بخشه Beflorae که به صورت نامعتبر چاپ شده بود، قرار داد. Clausen و دیگر متخصصان عقاید متفاوتی درباره محدوده و مرتبه گروه های Adnatae، Diffusae، Langsdorffianae، Stolonosae و Vaginate ابراز کرده اند (Ballard et al., 1999).

تصویری از خلاصه طبقه بندی Becker و تغییرات عمده اعمال شده توسط محققین بعدی در شکـل 1-1-1 نشان داده شده است.

2-1- موقعیت سیستماتیکی تیره Violaceae 

تیره Violaceae Batsch. با 23 جنس و نزدیک به 900-825 گونه عموماً در نواحی گرمسیری و نیمه گرمسیری جهان پراکنش دارد (Munzinger & Ballard, 2003; Melchior, 1925; Valentine, 1962; Watson & Dallwitz, 1992-97; Kruse, 1994). این تیره به مدت طولانی به عنوان تیره اصلی[1] راسته Violales شناخته می شد (Cronquist, 1981; Takhtajan, 1997)، ولی بر اساس مطالعات ملکولی در راسته Malpighiales قرار گرفته است (APG II, 2003; APGIII, 2009). دراین راستـه، تیـره Violaceae و 4 تیـره دیگـر (Achariaceae, Lacistemataceae, Passifloraceae & Salicaceae) یک کلاد را تشکیل می دهند (Davis et al., 2005; Tokuoka & Tobe, 2006) و Violaceae به عنوان گروه خواهری با Passifloraceae در نظر گرفته می شود (Soltis et al., 2007; Tokuoka & Tobe, 2006).

طبقه بندی تیره Violaceae توسط چندین گیاه شناس بررسی شده است (Melchior, 1925; Hekking, 1988; Munzinger & Ballard, 2003). با توجه به اغلب سیستم های طبقه بندی اخیر، این تیره به 3 زیر تیره تقسیم می شود: Leonioideae و Fusispermoideae از آمریکای جنوبی، که هر دو مونوژنریک و به طور مشخص ابتدایی هستند (Hodges et al., 1995; Hekking, 1988) و Violoideae که اشتقاق بیشتری دارد و بقیه سرده را شامل می شود. این طبقه بندی بر اساس پیچش گل در غنچه[2]، میوه، نوع بذر و میزان اتصال سطح پشتی بساک ها بوده است (Hekking, 1988; Munzinger & Ballard, 2003). زیر تیره Violoideae بر اساس دو صفت جام گل منظم یا نامنظم و حضور یا عدم حضور شهدگاه[3] به 2 طایفه Violeae و Rinoreae تقسیم می شود (Hekking, 1988; Munzinger & Ballard, 2003)، که سرده Viola متعلق به طایفه Violeae می باشد.

3-1- موقعیت سیستماتیکی سرده Viola

سرده Viola  بر اساس سیستم APG III طبق سلسله مراتب طبقه بندی زیر قرار می گیرد (APG III, 2009)

گونه های Viola در ایران بر اساس فلور ایران، در دو بخشه قرار می گیرند: بخشه Viola با 14 گونه و بخشه Melanium  با 5 گونه (خاتم ساز، 1991). این تقسیم بندی در فلورا ایرانیکا به این صورت است:

بخشه Viola با 9 گونه، بخشه Melanium با 4 گونه و بخشه Sclerosium با 2 گونه.

4-1- شرح ریخت شناسی تیره Violaceae

گیـاهانی علفی، درختچـه ای یا درختـی؛ کرک ها اغلب ساده؛ برگ ها متنـاوب یا متقابل، گاهی تشکـیل رزت انتهایی می دهند؛ ساده یا گاهی لوبدار، با حاشیه کامل یا اره ای و رگبندی شانه ای یا پنجه ای؛ دارای گوشوارک. گل آذین اغلب کاهش یافته به صورت یک گل منفرد، معمولاً محوری؛ گل ها اغلب دوجنسی؛ کاسبرگ ها 5 عدد، جدا از هم، گلبرگ ها 5 عدد، جدا از هم، با آرایش متراکب [1]یا حلقوی[2]، گلبرگ پایینی گاهی مهمیز دار. پرچم ها معمولاً 5 عدد، کنار یکدیگر به صورت یک حلقه به دور مادگی قرار گرفته اند، میله بسیار کوتاه، جدا از هم تا کمی پیوسته، دو بساک پشتی یا همه بساک ها با شهدگاه مهمیزی یا غده ای شکل، اغلب به یک زایده رأسی سه گوش یا غشایی متصل شده؛ دانه های گرده اغلب Tricolporate؛ برچه ها معمولاً 3 عدد، متصل؛ تخمدان فوقانی، با تمکن جانبی؛ خامه معمولاً خمیده یا نوک دار، کلاله معمولاً پهن شده، گاهی لوبدار. تخمک ها یک عدد یا بیشتر در هر تمکن؛ میوه معمولاً کپسول چند خانه ای؛ بذر ها معمولاً دارای زایده آریل.

5-1- شرح ریخت شناسی سردهViola

ریخت شناسی گل

سرده Viola بر اساس ریخت شناسی گل به دو دسته تقسیم می شود (Tutin et al., 1968): بخشه Melanium که Pansies نامیده می شوند و سایر بخشه ها که با نام عمومی Violets شناخته می شوند. وجه تمایز دو گروه نحوه قرارگیری گلبرگ های کناری است که در Violets به سمت پایین و در Pansies به سمت بالا است. ویژگی های متمایز کننده دیگر عبارتند از: (i) پراکنش بیوجغرافیایی: Pansies تنها در اروپا و غرب آسیا پراکنش دارد، درحالیکه Violets همه جا زی[1] هستند (Clausen, 1929). (ii) وجود چند شکلی[2] دانه گرده: بررسی 28 گونه اروپایی Viola نشان می دهد که 81% گونه های Pansies این چند شکلی را نشان می دهند در صورتی که این رقم برای Violets 42% است (Dajoz, 1999)؛ (iii) دیگر ویژگی های ریخت شناسی گل مانند طول جام گل و طول مهمیز؛ همچنین اکولوژی گرده افشانی در بین دو گروه به میزان زیادی متفاوت است (Beattie, 1971, 1974; Herrera, 1993; Ballard, 1996). Pansies تنها گل های برون زاد آور (Chasmogamous) تولید می کننـد (Knuth, 1908; Herrera, 1993)، در حالیکه Violets هر دو نوع گل های باز و جاذب حشرات (Chasmogamous) و گل های شدیداً کاهش یافته، بسته و خود گرده افشان (Cleistogamous) تولید می کنند (Beattie, 1969; Grime et al., 1986).

فرم رویشی: در سرده Viola، فرم رویشی به میزان قابل توجهی در بین گونه ها متفاوت است. ساختار پایه غالب در این سرده، ریزوم با برگ های رزت انتهایی (در چند ردیف)، چند ساله و ساقه گل دهنده جانبی (با برگ هایی در دو ردیف)، یک ساله است. این ساختار پایه برای مثال در V. riviniana و Vrupestris، به شکل های مختلف تغییر می یابد. در برخی گونه ها، برگ های رزت وجود نداشته و تنها ساقه گل دهنده خارج شده از ریزوم دیده می شود (V. elatior, V. canina). در برخی دیگر، ساقه هوایی به صورت ساقه رونده[3] تغییر یافته (V. palustris, V. odorata) و یا اصلاًً وجود ندارد (V. hirta, V. somchetica). در بخشه Melanium سیستم ساقه ای اصلی به میزان زیادی تغییر یافته و به آسانی قابل شناسایی نیست. گونه های درختی و درختچه ای در هاوایی دیده می شود (V. tracheliifoliaV. waialenalenae).  به گونه هایی که گل های آن در ساقه های هوایی قرار دارد، ساقه دار[4]  و به آن دسته که گل ها از محل خروج  برگ های رزت ایجاد می شوند، بدون ساقه[5] می گویند.

برگ: برگ ها ساده، رزت و یا ساقه ای با آرایش متناوب؛ معمولاً قلبی شکل، کلیوی شکل تا سه گوش، گاهی کشیده یا تخم مرغی و یا  قاشقی؛ حاشیه کامل، دندانه دار یا اره ای؛ دمبرگ دار.

موضوعات: بدون موضوع  لینک ثابت
[چهارشنبه 1399-07-30] [ 02:43:00 ق.ظ ]




1-6- مقایسه جنین­های طبیعی با جنین­های آزمایشگاهی……………………………………….26

1-7- انجماد

1-7-1- مراحل اصلی انجماد…………………………………………………………………………30

1-7-2- راه­های کاهش اثرات زیانبار مواد محافظت کننده…………………………………………30

1-7-3- روش­های انجماد……………………………………………………………………………….30

1-7-3-1- انجماد شیشه­ای…………………………………………………………………………..31

1-7-3-1-1- عوامل تکنیکی موثر در انجماد شیشه­ای……………………………………………..32

1-7-3-1-1-1- زمان تعادل و آبگیری……………………………………………………………………32

1-7-3-1-1-2- سرعت سرد کردن………………………………………………………………………32

1-7-3-1-1-3- سرعت گرم کردن……………………………………………………………………….35

1-7-3-1-1-4- مواد محافظ انجمادی……………………………………………………………………35

1-7-3-1-1-5- نقش ضد یخ­ها…………………………………………………………………………..36

1-7-3-1-1-6- ذوب و آبدهی…………………………………………………………………………. 36

1-8- آلدوسترون………………………………………………………………………………………….37

1-8-1- خصوصیات………………………………………………………………………………………37

1-8-2- عملکرد………………………………………………………………………………………….38

1-9- ارزیابی کیفیت رویان……………………………………………………………………………..41

1-10- سلول­های رویانی………………………………………………………………………………..43

فصل دوم: مروری بر متون گذشته

2-1- اثرات انجماد بر روی تخمک………………………………………………………………………46

2-2- اثر روش انجماد شیشه­ای……………………………………………………………………….47

2-3- بیان زیر واحد­های پمپ Na/K ATpase در تخمک و جنین……………………………………..48

2-4- پمپ  Na/K ATpase ……………………………………………………………………………

 

2-5- آکواپورین­ها…………………………………………………………………………………………..51

2-6- هچ یا تفریخ………………………………………………………………………………………..52

2-7- فعال شدن ژنوم رویانی……………………………………………………………………………55

2-8- متابولیسم رویان…………………………………………………………………………………..56

2-9- نقش آلدوسترون در بیان پروتیین Na/K ATpase………………………………………………

فصل سوم: مواد و روش­ها

3-1- تولید جنین های حاصل از لقاح خارج رحمی (IVF)

3-1-1- جمع‌آوری تخمدان‌ها از کشتارگاه و استحصال تخمک‌ها از مایع فولیکولی……………….61

3-1-2- بلوغ آزمایشگاهی تخمک‌ها (IVM)………………..……….…….………………………………62

3-1-3- لقاح داخل آزمایشگاهی (IVF)…………………………………………………………………63

3-1-3-1- آماده سازی اووسیت­های بالغ شده برای لقاح………………………………………………63

3-1-3-2- آماده سازی اسپرم…………………………………………………………………………….63

3-1-4- کشت داخل آزمایشگاهی جنین های حاصل از(IVF)………………………………………..64

3-1-5- تازه كردن محیط کشت جنین‌ها…………………………………………………………………65

3-2- تهیه محلول‌های انجمادی…………………………………………………………………………..65

3-3- مراحل انجام روند انجماد شیشه ای………………………………………………………………66

3-4- محیط ذوب…………………………………………………………………………………………….66

3-5- گروه­های آزمایشی و طراحی مطالعه…………………………………………………………….66

3-6- ارزیابی جنین‌ها

3-6-1- ارزیابی کیفی جنین‌ها با استفاده از رنگ‌آمیزی افتراقی……………………………………..68

3-7- ایمونوسایتوشیمی پروتئین­های سطحی جنین های گوسفندی(Sheep embryo ICC)……..70

فصل چهارم: نتایج

4-1- تخمک­های منجمد شده

4-1-1- گروه آزمایشی اول، افزودن آلدوسترون به محیط IVM تخمک­های منجمد-ذوب شده در مرحله GV

4-1-2- گروه آزمایشی دوم، افزودن آلدوسترون در روز چهارم

جنینی (D4)، به محیط کشت جنین­های حاصل از تخمک­های منجمد-ذوب شده…………………..82

4-1-3- گروه آزمایشی سوم، افزودن آلدوسترون در طی IVM، ومتعاقباً انجماد تخمک ها در مرحله MII

4-1-4- گروه آزمایشی چهارم، یا گروه کننرل………………………………………………………….83

4-2- تخمک های منجمد نشده

یک مطلب دیگر :

 

4-2-1- گروه آزمایشی پنجم، افزودن آلدوسترون به محیط IVM تخمک­های غیر منجمد…………..85

4-2-2- گروه آزمایشی ششم، افزودن آلدوسترون در روز چهارم جنینی (D4)، به محیط کشت جنین­های حاصل از تخمک­های غیر منجمد…85

4-2-3- گروه آزمایشی هفتم، یا گروه کنترل………………………………………………………….86

4-3- فصل پنجم: بحث و پیشنهادات

بحث………………………………………………………………………………………………………89

نتیجه ­گیری…………………………………………………………………………………………….. 94

پیشنهادات……………………………………………………………………………………………… 95

منابع…………………………………………………………………………………………………….. 96

خلاصه انگلیسی………………………………………………………………………………………..113

چکیده:

هدف: هدف از این مطالعه بررسی تآثیر آلدوسترون در افزایش توانمندی تکاملی تخمک های منجمد شده گوسفند با افزودن آلدوسترون در مرحله بلوغ تخمک و مرحله کشت جنینی می باشد.

مواد و روش ها: تخمک های حاصل از تخمدان های کشتارگاهی، بطور تصادفی به شش گروه آزمایشی تقسیم شدند: گروه های یک و دو: بلوغ تخمک های (IVM) منجمد شده و تازه در حضور آلدسترون و متعاقباً لقاح آزمایشگاهی تخمک ها (IVF) و کشت جنین های حاصله (IVC) (به ترتیب گروه هایVit-IVM  و IVM). گروه های سه و چهار: IVM و IVF تخمک های منجمد شده و تازه، و متعاقباً IVC جنین های حاصله در حضور آلدوسترون در روز چهارم (D4) کشت جنینی (به ترتیب گروه های Vit-D4 و D4).  گروه های پنجم و ششم: IVM، IVF و IVC تخمک های منجمد شده ( Vit-Cont) و تازه (Fresh-Cont) بدون حضور آلدوسترون. جنین ها در مراحل مورولا و بلاستوسیت، توسط آنتی بادی های اولیه بر علیه زیر واحدهایα1  و β1 پمپ Na+/K+/ATPase رنگ آمیزی ایمونوسیتوشیمی شدند.

نتایج: میزان تفریخ در گروه هایی که در IVM و یا IVC آنها آلدوسترون افزوده شده بود، در هر دو گروه تخمک های منجمد شده و تازه (به ترتیب گروه های Vit-IVM، IVM، Vit-D4 و D4) در مقایسه با گروه های کنترل (به ترتیب Vit-Cont. و Fresh-Cont.) به طور معنی داری بیشتر بود. میزان بیان تحت واحد β1 پمپ Na+/K+/ATPase، در گروه های Vit-D4 و D4 به طور معنی داری بیشتر از سایر گروه های بود. همچنین نسبت ICM/Total نیز به طور معنی داری در گروه IVM بیشتر از سایر گروه ها بود.

بحث: به طور خلاصه، اضافه نمودن آلدسترون به محیط های کشت IVM و IVC می تواند موجب افزایش معنی دار میزان تفریخ در هر دو گروه تخمک های منجمد شده و تازه گردد. این افزایش میزان تفریخ ممکن است با میزان بیان بیشتر زیر واحد β1 پمپ Na+/K+/ATPase، که احتمالاً توسط افزودن آلدوسترون به محیط کشت القا گردیده است، در ارتباط باشد.

مقدمه و معرفی طرح:

در سال­های اخیرعلل مختلفی از قبیل بالا رفتن سن ازدواج، تعییر شیوه زندگی، عوامل عفونی و شیمیایی، اشعه و شیمی درمانی، مسائل ژنتیکی و یائسگی زود رس منجر به ناباروری زوج­های بسیاری شده و لذا انجماد و نگهداری تخمک اقدام اساسی در حفظ قدرت باروری و درمان ناباروری به شمار می­رود. با توجه به ضرورت حفظ و نگهداری تخمک در روش­های کمک باروری[1](ART) تلاش­های زیادی جهت انجماد و نگهداری تخمک­ها صورت گرفته است، لیکن تا­کنون روش قابل اعتمادی در انجماد تخمک که بتواند میزان بالایی از زنده مانی تخمک­ها را نشان دهد گزارش نشده است. علی رغم بررسی های متعدد صورت گرفته بر روی تغییرات مورفولوژیک، فراساختاری، فیزیولوژیک و عملکردی تخمک های منجمد- ذوب شده، هنوز اطلاعات اندكی در خصوص وقوع تغییرات ملکولی و بیوشیمیایی ­ایجاد شده در تخمک های مذکور و نیز الگوی بیان پروتیین های مرتبط با توان تكاملی تخمک ها پس از لقاح، به چشم می خورد. با توجه به مطرح بودن این گونه حیوانی به عنوان حیوان مدل انسان برای مطالعات تخمدان و تخمک، خطر انقراض برخی از نژادهای این گونه جانوری، اهمیت این گونه حیوانی از نظر اقتصادی (فراورده های دامی)، نقش آن به عنوان بیوراكتور در مطالعات مرتبط با تولید حیوان تراریخته و نیز عدم انجام مطالعه ای در خصوص بررسی ارتباط بین تجویز آلدوسترون و وضعیت بیان آنزیم Na+/K+/ATPase در روند تشکیل بلاستوسیست، در مطالعه حاضر به بررسی تاثیرآلدوسترون در بهبود کیفی تخمک های منجمد شده پرداخته خواهد شد.

بدین منظور تخمك های استحصال شده از تخمدان های كشتارگاهی گوسفند، در مرحله GV از تقسیمات میوزی به روش کرایوتاپ و با استفاده از روش انجماد شیشه ای منجمد و پس از گذشت یك هفته ذوب شده و پس از لقاح، مراحل تكاملی آنها در شرایط آزمایشگاهی مورد بررسی قرار می گیرد.

فصل اول: کلیات

1-1- بیان مسأله

با وجود دستیابی به کارآیی نسبتاً بالا در تکنیک های انجماد اسپرم و جنین در پستانداران و از جمله گونه گوسفند، هنوز تکنیک مؤثری به منظور انجماد تخمک های این گونه حیوانی شناسایی نگردیده است. از جمله مهم ترین اهداف انجماد تخمک در نمونه های حیوانی می توان به حفظ و مدیریت ذخایر ژنتیکی، توسعه علم مهندسی ژنتیک، ارتقای تکنیک انتقال هسته[1] (NT) در روند شبیه سازی، تهیه منابع کافی جهت انجام تحقیقات بنیادین، صادرات کم هزینه صفات ژنتیکی برتر و ایجاد بانک تخمك اشاره نمود. علاوه بر این با حفظ و ذخیره سازی طولانی مدت این منابع (تخمك) امکان اعمال برنامه های مدیریتی قویتر در مورد گونه های جانوری در معرض خطر انقراض و در انسان نیز امکان حفظ باروری در زنان در معرض خطر اختلال در عملکرد تخمدان به علت درمانهای خاص (شیمی و پرتو درمانی)، جراحی، نارسایی زودرس تخمدان و … فراهم می گردد؛ ضمن این که انجماد تخمک در نمونه های انسانی هیچ یک از مشکلات و محدودیت های اخلاقی و حقوقی انجماد جنین را نیز به همراه ندارد.  مطالعات نشان می دهند که در تخمک های منجمد- ذوب شده، آسیب های فراساختاری، مورفولوژیک، فیزیولوژیک و عملکردی متعددی به چشم می خورد که مهم ترین آنها عبارتند از: وارد شدن صدمات غیرقابل برگشت به غشاء پلاسمایی تخمك، کاهش نفوذپذیری انتخابی غشاء پلاسمایی، اگزوسیتوز زودرس گرانول های کورتیکال، سفت و سخت شدن زوناپلوسیدا، کاهش شدید میکروویلی ها، بهم ریختگی شدید اووپلاسم، تغییرات شدید و کاهش مشخص دستجات میکروتوبول ها و میکروفیلامان ها، بهم ریختگی دوک تقسیم و حرکت اجزاء اطراف سانتریول ها به مرکز تخمك، خرد شدن هسته، افزایش احتمال پارتنوژنزیس، کاهش شدید فاکتور پیش­برنده میتوز MPF[2]، کاهش مشخص متابولیت ها و پروتئین ها، آنپلوییدی و پلی پلوییدی اشاره نمود .

در این مطالعه به بررسی افزودن برخی عوامل مؤثر در روند اتجماد تخمک مانند آلدوسترون در محیط های اختصاصی کشت جنین و تأثیر آنها بر بیان پروتیین مورد نظر (Na/K ATpase)در مراحل مختلف جنینی

موضوعات: بدون موضوع  لینک ثابت
 [ 02:43:00 ق.ظ ]




موضوعات: بدون موضوع  لینک ثابت
 [ 02:42:00 ق.ظ ]




موضوعات: بدون موضوع  لینک ثابت
 [ 02:41:00 ق.ظ ]




2-13- برخی از كاربرد الگوریتم‏های ژنتیكی…………………………… 33

2-14- الگوریتم های تقریبی……………………………………………. 34

2-15- ارزیابی كارایی الگوریتمها………………………………………. 35

2-16- قضیه ی ماكسیمم ها………………………………………….. 37

2-16-1- كروموزوم………………………………………………………. 38

2-16-2- جمعیت………………………………………………………… 38

2-16-3- تابع برازندگی…………………………………………………. 38

2-17-  عملگرهای الگوریتم  ژنتیك…………………………………… 39

2-17-1- عملگر انتخاب………………………………………………… 39

2-17-2- روش های انتخاب……………………………………………. 39

2-17-3- نمونه ‏برداری به روش چرخ رولت…………………………… 39

2-17-4- انتخاب تورنومنت………………………………………………40

2-17-5- عملگر آمیزش………………………………………………… 40

2-17-6- تلفیق تک نقطه ای…………………………………………. 41

2-17-7- روش ادغام دو نقطه ای……………………………………. 42

2-18- تلفیق نقطه ای………………………………………………… 42

2-19- تلفیق جامع……………………………………………………. 42

2-20- عملگر جهش…………………………………………………… 42

2-21- جمع بندی………………………………………………………. 43

فصل سوم- ارائه مدل و الگوریتم………………………………………44

 

3-1- مقدمه…………………………………………………………….. 45

3-2- فرض های مسئله……………………………………………….. 45

3-3- حد های بالا و پایین……………………………………………… 47

3-3-1- نمونه ساده شده کوله پشتی یک بعدی……………………. 47

3-4-  الگوریتم های حریصانه…………………………………………… 48

3-4-1- الگوریتم HCKP………………………………………………….

3-4-2- الگوریتم HCHV…………………………………………………

3-4-3- الگوریتم HCGAP………………………………………………..

3-4-4- الگوریتم HCORD……………………………………………….

3-4-5- الگوریتم HCORD2……………………………………………..

3-5- الگوریتم ژنتیک…………………………………………………… 52

3-5-1- نمایش و برازندگی…………………………………………….. 52

3-5-2- فرآیند تکامل……………………………………………………. 53

3-5-3- عملگر های تلفیق…………………………………………….. 55

3-6- اکتشاف آنلاین……………………………………………………. 57

3-7- خلاصه الگوریتم…………………………………………………… 60

فصل چهارم- محاسبات و یافته های تحقیق………………………… 62

4-1- نمونه های سنجش با اندازه کوچکتر………………………….. 63

4-2- مسائل سنجش با اندازه بزرگ…………………………………. 67

4-3- مقایسه با دیگر الگوریتم ها……………………………………. 69

4-4- بسته بندی مربعی………………………………………………. 73

فصل پنجم- نتیجه گیری و ارائه پیشنهادات………………………….. 75

5-1- نتیجه گیری………………………………………………………… 76

5-2-  پیشنهاداتی برای آینده………………………………………….. 77

منابع و مآخذ…………………………………………………………….. 78

چکیده:

مسئله کوله پشتی ، مسئله ای در بهینه سازی ترکیبیاتی است. ازمسئله کوله پشتی به نام هایی چون KnapsackیاRucksack نیز یاد می کنند. به بیان ساده مسئله کوله پشتی اینطور بیان می شود که فرض کنید مجموعه ای از اشیا، که هر کدام داری وزن و ارزش خاصی هستند در اختیار دارید. به هر شی تعدادی را تخصیص دهید به طوری که وزن اشیا انتخاب شده کوچکتر یا مساوی حدی از پیش تعیین شده، و ارزش آنها بیشینه شود.

یک مطلب دیگر :

 

در این مسئله ما یک مستطیل بزرگتر داریم که بایستی به تعبیری آنرا برش زده و به قطعات کوچکتر تقسیم کنیم. در واقع این به این معناست که ما در داخل این مستطیل بزرگ که مخزن[1] هم میتوان آنرا نامید ، قطعات مستطیلی کوچکتری قرار دهیم.

هدف از این نوع بسته بندی هم ماکزیمم کردن سطح مستطیل های قرار گرفته شده است. ما در این مقاله ابتدا الگوریتمی حریصانه جدیدی ارائه کرده و به دنبال آن یک رهیافت ژنتیک با استفاده از تئوری نخبه گرایی[2] ، نرخ مهاجرت[3]، اکتشاف آنلاین[4] و اپراتورهای تلفیق[5] مناسب معرفی می کنیم.

به عنوان مثال ارائه یک توالی مناسب برای جمع آوری بسته های موجود .

ابتدا و در فاز مقدماتی ما حدود بالایی[6] برای مسئله محاسبه می نماییم. در اینجا راه حل های آغازین نیز از طریق الگوریتم های حریصانه بدست می آیند. در ادامه فرآیند جستجوی ژنتیک که از عملگر های مختلف و همچنین تئوری نخبه گرایی استفاده می کند، اجرا می گردد. جستجوی ژنتیک با یک الگوریتم اکتشاف آنلاین ترکیب می شود.

از منظر روش تحقیق بکار رفته در این مسئله، از نظر هدف پژوهش می توان گفت که تحقیق از نوع کاربردی بوده و بر اساس ماهیت و روش گردآوری داده ها یک پژوهش توصیفی می باشد.

از دستاوردهای این تحقیق می توان به این نکته اشاره کردکه بر طبق نتایج محاسباتی و تعداد زیادی از معیارهای سنجش کارایی با مقیاس کم و زیاد (مسائل بزرگ و کوچک) ، مدلی که ما ارائه کرده ایم نتایج بهتری از مدل های قبلی موجود نشان می دهد و راه حل هایی با تابع هدف بزرگتر تولید می نماید.

روش فراابتکاری بکارگرفته شده در این پایان نامه مبتنی بر الگوریتم ژنتیک می باشد. .سپس الگوریتمی حریصانه جهت یافتن یک راه حل بهتر و مناسب تر بکار گرفته شده است. و در نهایت هم با استفاده از یک الگوریتم فرا ابتکاری راه گذر کردن از یک نقطه بهینه محلی به نقطه بهینه اصلی فراهم می گردد.

فصل اول: مقدمه و کلیات تحقیق

1-1- مقدمه

فرض کنید مجموعه ای از اشیا، که هر کدام داری وزن و ارزش خاصی هستند در اختیار دارید. به هر شی تعدادی را تخصیص دهید به طوری که وزن اشیا انتخاب شده کوچکتر یا مساوی حدی از پیش تعیین شده، و ارزش آنها بیشینه شود. علت نامگذاری این مسئله، جهانگردی است که کوله پشتی ای با اندازه ی محدود دارد و باید آن را با مفیدترین صورت ممکن از اشیا پر کند.

معمولا در تخصیص منابع با محدودیت های مالی، با این مسئله روبرو هستیم. همچنین مسائلی از این قبیل در ترکیبیات، نظریه پیچیدگی محاسباتی، رمزنگاری و ریاضیات کاربردی به چشم می خورد..

نسخه ی مسئله تصمیم برای مسئله ی کوله پشتی، این سوال است: “آیا ارزش V با انتخاب اشیایی با مجموع وزن کمتر یا مساوی W، قابل دستیابی است؟”

2-1- تعریف مسئله

فرض کنید که جهانگردی می خواهدکوله پشتی خود را با انتخاب حالتهای ممکن از بین وسائل گوناگونی که بیشترین راحتی را برایش فراهم می سازند پر کند. این مسئله می تواند با شماره گذاری این وسائل از 1 تا n و تعریف برداری از متغیرهای دودویی بصورت ریاضی فرمول بندی شود. مسئله ما انتخاب برداری از بین بردارهای دودویی است،که محدودیت را بر آورده کند. بطوریکه تابع هدف ماکزیمم مقدار خود را بگیرد .

در این رابطه باید روشی برای حل این مسئله پیدا کرد . یک روش ابتدایی که در نگاه اول توجه ما را به خود جلب می کند ، عبارت از برنامه نویسی برای کامپیوتر به منظور امتحان کردن تمامی بردارهای دودویی ممکن x است، تا از بین بردارهایی که محدودیت مسئله را ارضاء می کنند بهترین را انتخاب کند. متاسفانه تعداد چنین بردارهایی مشکل اصلی ماست .بطوریکه یک کامپیوتر فرضی که می تواند یک بیلیون بردار را در یک ثانیه امتحان کند؛برای n = 60 بیش از 30 سال وقت لازم دارد و بیش از 60 سال برای n = 61 و دهها قرن برای n = 65 والی اخر. با این وجود با استفاده از الگوریتمهایی خاص می توان در بسیاری موارد مسئله ای با n = 100 000 را در عرض چند ثانیه روی یک کامپیوترکوچک حل کرد .

3-1- یک مثال از مسئله کوله پشتی

صورت مسئله: دزدی قصد سرقت از مغازه ای رو دارد و حداکثر وزن w از اجناس را که می تواند بدزد در این مغازه n نوع جنس وجود دارد. اگر وزن جنس iام wi و قیمت آن vi باشد ماکسیمم سودی که بدست می آورد چقدر است؟

این مسئله به دو صورت تعریف میشود : 1- صفر و یک 2- حالت کسری

در حالت صفر و یک مسئله به این صورت تعریف میشود که دزد یا یک جنس رو برمیدارد و یا برنمیدارد و حق برداشتن تکه ای از یک جنس را ندارد. برای این مسئله راه حل حریصانه ای وجود ندارد و به ارائه یک راه حل پویا حل میشود.

ایده حل این مسئله در حالت پویا به این صورت هست که دزد یا جنس iام رو برمیدارد و یا برنمیدارد و براساس این دو حالت سود زیرمسئله ایجاد شده محاسبه میشود و از مسیری که جواب ماکسیمم رو داده پیش خواهد رفت.

حالت دوم حالت کسری است که دزد می تواند کسری از یک قطعه را بردارد.

[1] container

موضوعات: بدون موضوع  لینک ثابت
 [ 02:40:00 ق.ظ ]