2-6-1-1-3-رنگهای شیمیایی یا سنتیک(مصنوعی)…………………………….24
2-6-1-2- پانسیو 4-آر………………………………………………………………………25
فصل سوم: مواد و روشها
3-1- مقدمه …………………………………………..27
3-2- تجهیزات آزمایشگاهی………………………………………………………………27
3-2-1- مخزن بالادست ………………………………………………………..27
3-2-2- مخزن پاییندست……………………………………………………..28
3-2-3- ستون خاک…………………………………………………………28
3-2-4- تابلو پیزومتری …………………………………………………………29
3-2-5- تجهیزات اسپکتروفتومتری………………………………………………………29
3-3- نمونه خاکهای مورد آزمایش……………………………………………………………….30
3-3-1- آزمایش دانه بندی مصالح…………………………………………………31
3-3-2- مشخصات فیزیکی خاکهای مورد استفاده………………………………………………32
3-3-3- تعیین قطر متوسط ذرات ……………………………………………………………32
3-3-4- تعیین تخلخل ذرات خاک …………………………………………………….32
3-3-5- تعیین هدایت هیدرولیکی خاک …………………………………………………………..33
3-4- ردیابهای رنگی مورد استفاده در این پژوهش……………………………………..33
3-4-1- رنگ پانسیو 4-آر……………………………………………………………..33
3-4-1-1- طیف مربوط به رنگ پانسیو 4-آر…………………………………………….33
3-4-1-2- رسم منحنی کالیبراسیون رنگ پانسیو 4-آر…………………………………………..33
3-4-2- رنگ ویولت کوواسول……………………………………………………34
3-4-2-1-طیف مربوط به رنگ ویولت کوواسول……………………………………….. 34
3-4-2-2- رسم منحنی کالیبراسیون رنگ ویولت کوواسول…………………………..34
3-5- اجرای آزمایشها ………………………………………………………………36
3-5-1- آزمایش جذب ماده رنگی در نمونه خاک…………………………….36
3-5-2- اجرای آزمایش ردیابی……………………………………………………………36
3-6- بازیابی جرم ردیابها……………………………………………………..37
3-7- مدلسازی عددی جریان و ردیاب ………………………………………37
3-7-1- معرفی مدل Seep/w…………………………………………………………………37
3-7-1-1- مراحل مدلسازی در Seep/w ………………………………….38
3-7-2- معرفی مدل Ctran/w…………………………………………………….38
3-7-3- معادله حاکم و شرایط مرزی……………………………………………….38
3-7-3-1-نحوه محاسبه ضریب انتشار طولی…………………………………….39
3-7-4- اجرای مدل عددی………………………………………………………………………..39
فصل چهارم: بحث و نتایج
4-1- مقدمه……………………………………………………………………………40
4-2- نتایج آزمایش جذب ماده رنگی در نمونه خاک……………………………………40
4-3- نتایج آزمایشهای ردیابی……………………………………………………………………….40
4-3-1- نتایج بازیابی ماده ردیاب پانسیو4-آر …………………………………………….40
4-3-1-1- نتایج بازیابی پانسیو 4-آر برای خاک ریز دانه(FS)………………………………41
4-3-1-2- نتایج بازیابی پانسیو 4-آر برای خاک درشت دانه(CS)………………………41
4-3-1-3- نتایج بازیابی پانسیو 4-آر برای خاک ترکیبی (MS)……………………………42
4-3-2- منحنیهای رخنه برداشت شده پانسیو4-آر………………………42
4-3-2-1- منحنیهای رخنه برداشت شده در خاک ریزدانه با ماده رنگی پانسیو 4-آر………………………………………..42
4-3-2-2- منحنی های رخنه برداشت شده در خاک درشت دانه با ماده رنگی پانسیو 4-آر………………………………..46
یک مطلب دیگر :
4-3-2-3- منحنیهای رخنه برداشت شده در خاک ترکیبی با ماده رنگی پانسیو 4-آر……………………………………….49
4-3-2-4- ضریب انتشار طولی پانسیو 4-آر…………………………………………………53
4-3-3- نتایج بازیابی ماده ردیاب ویولت کوواسول………………..53
4-3-3-1- نتایج بازیابی ویولت کوواسول برای خاک ریزدانه………………………………………….53
4-3-3-2- نتایج بازیابی ویولت کوواسول برای خاک درشت دانه…………………………….53
4-3-3-3- نتایج بازیابی ویولت کوواسول برای خاک ترکیبی……………………………………….54
4-3-4- منحنیهای رخنه برداشت شده برای ویولت کوواسول…………………………..54
4-3-4-1- منحنیهای رخنه برای خاک ریزدانه با ماده رنگی ویولت کوواسول…………………………………………………….54
4-3-4-2- منحنیهای رخنه برای خاک درشت دانه با ماده رنگی ویولت کوواسول……………………………………………..58
4-3-4-3- منحنیهای رخنه برای خاک ترکیبی با ماده رنگی ویولت کوواسول……………………………………………………61
4-3-4-4- ضریب انتشار طولی ویولت کوواسول…………………………………………………………….64
4-4- نتایج مدلسازی با Ctran/w…………………………………………………………64
4-4-1- نتایج مدلسازی ردیاب پانسیو 4-آر……………………………………………………….64
4-4-1-1- نتایج مدلسازی ردیاب پانسیو 4-آر در خاک ریزدانه…………………………………….64
4-4-1-2- نتایج مدلسازی ردیاب پانسیو 4-آر در خاک درشت دانه……………………………………………………………………67
4-4-1-3- نتایج مدلسازی ردیاب پونسیو 4-آر در خاک ترکیبی…………………………………………………………………………70
4-4-2- نتایج مدلسازی ردیاب ویولت کوواسول……………………………………………..73
4-4-2-1- نتایج مدلسازی ردیاب ویولت کوواسول در خاک ریزدانه…………………………………………………………………….73
4-4-2-2- نتایج مدلسازی ردیاب ویولت کوواسول در خاک درشت دانه……………………………………………………………..76
4-4-2-3- نتایج مدلسازی ردیاب ویولت کوواسول در خاک ترکیبی……………………………………………………………………79
فصل پنجم: نتیجه گیری و پیشنهاد ها
5-1- مقدمه…………………………………………………………………………………..82
5-2- نتایج کلی…………………………………………………………………………………..82
5-3- پیشنهادها……………………………………………………………………………………….83
فهرست منابع…………………………………………………………………………84
– مقدمه
امروزه ردیابی در مسائل آب و خاک در مقایسه با گذشته كاربردی بسیار گستردهتر یافته است. بررسی ارتباط هیدرولیكی و ویژگیهای هیدرودینامیكی سفرههای آب زیرزمینی، ارزیابی منشاء و گسترش آلودگی از مهمترین كاربردهای این روش هستند. در كشور ما نیز همگام با فرآیند توسعه و با رشد فزآینده صنعت سدسازی و مطالعات منابع آب و خاک در حوضههای گوناگون، روش ردیابی در آبهای سطحی و زیر سطحی نیز افزایش یافته است.
در گذشته كاربرد عمده ردیابها در آبهای زیرزمینی در پی بردن به مواردی همچون جهت، مسیر، سرعت و زمان عبور آب بوده است. امروزه با توجه به روند رو به افزایش آلودگی منابع آبهای سطحی و زیرزمینی، افزون بر موارد فوق مواردی همچون پخشیدگی و انتقال آلایندهها نیز مورد توجه میباشد. به منظور شناخت و حفاظت كیفی منابع آب داشتن اطلاعات دقیق از رفتار مواد آلاینده در درون این سیستم ضروری است كه به كمك روشهای ردیابی می توان این رفتار را تا حدود زیادی شبیه سازی نمود.
1-2- کلیات پژوهش
آزمایشهای ردیابی از جمله روشهای تكمیلی است كه در مراحل پایانی مطالعات سیستماتیك منابع آب و خاک و ژئوتكنیك به كار میرود. در این مطالعات با توجه به گسترش منطقه مورد مطالعه ممکن است از ایزوتوپهای محیطی و ردیابهای مصنوعی (شیمیایی، رنگی) استفاده شود. باید توجه داشت اگر عملیات ردیابی مطابق دستورالعمل و با رعایت احتیاطهای لازم انجام نگیرد، نه تنها مفید نبوده، بلكه نتایج گمراهكنندهای را نیز بدنبال خواهد داشت (بینام، 1388).
مطالعات ردیابی آبهای زیرزمینی همیشه بعد از انجام مطالعات كلاسیك هیدروژئولوژی و انجام بررسیهای ژئوفیزیكی و ژئوتكنیكی معمول انجام میپذیرد، همچنین به كارگیری ردیابها در منابع آب و خاک براساس ویژگیهای محیط و خصوصیات ردیاب صورت میگیرد. گاهی اوقات خصوصیات هیدرولوژیکی مکان مورد استفاده محدودیتهایی را برای استفاده از برخی ردیابها به وجود میآورد. افزون بر ویژگیهای فوق عوامل دیگری مانند اثرات فیزیكی، شیمیایی و بیولوژیكی نیز ممكن است بر نتایج ردیابی تأثیرگذار باشد.