4-4-4- مقایسه نتایج به‌دست‌آمده از آزمایشات…..……………………………………..84
4-4-5- بررسی درصد کاهش فشار در پشت دریچه……………………………………….87
4-5- مدل­سازی عددی…………………………………………………………………………91
فصل پنجم: بحث و نتیجه ­گیری
5-1- بحث و نتیجه­ گیری…………………………………………………………………….97
5-2-پیشنهادات………………………………………………………………………………..98
فهرست منابع و مآخذ…………………………………………………………………………99
چکیده:
مقاومت قوسی خاک یکی از پدیده­های مهم در مسائل ژئوتکنیکی از قبیل سازه­های زیرزمینی، تونل­ها، شمع­های سرباز، دیوارهای حائل و غیره، می­باشد. تئوری آرچینگ حدود 150 سال پیش شناخته شد. تحقیقات در حقیقت به‌صورت پراکنده و اغلب نسبت به یک ناحیه­ی خاص که از اهمیت ویژه­ای در آن نقطه زمانی داشته است، می­باشد. در سال 1943 عمومی­ترین تعریف قابل‌قبول برای پدیده قوسی توسط ترزاقی ارائه گردید، به‌طور خلاصه اگر قسمتی از دریچه­ی صلب توده­ی خاک رو به پایین حرکت کند، خاک مجاور، با توجه به باقی‌مانده از توده خاک، حرکت می‌کند. در این پایان‌نامه با ساخت جعبه­ای با دریچه­های متغیر که قابلیت جابجایی دارند، در محیط آزمایشگاهی سعی شده حرکت دریچه در راستای افق بوده و پدیده­ی قوسی خاک بر روی دو نوع ماسه در این حالت مورد بررسی قرار گیرد. سپس میزان خاک جابجا شده، شکل و سطح گسیختگی اندازه­ گیری شده و تغییرات تنش در پشت دیوار به نسبت عرض آن مورد بررسی قرار گرفته است. همچنین یک نمونه از آزمایش­های انجام شده در محیط نرم­افزار عددی PLAXIS مدل شده و مورد مقایسه قرار گرفته است. درنهایت می­توان دید که سطح گسیختگی غیره­خطی بوده و توزیع تنش در پشت دریچه

<p>2-3 -2 -3-1-1- کلیات………………………………………………………………………….. 16<br />2-3-2-3-1-2- نقطه ی کنترل………………………………………………………………… 17<br />2-3-2-3-1-3- توزیع بار جانبی………………………………………………………………. 17<br />2-3-2-3-1-4- مدل رفتار دوخطی نیرو– تغییرمکان سازه……………………………………. 18<br />2 -3 – 2-3 – 5-محاسبه ی زمان تناوب اصلی موثر…………………………………………. 19<br />2-3- 2-3- 2- برآورد نیروها و تغییرشکلها……………………………………………………. 19<br />2-3-2-3- 2– 1- ساختمان با دیافراگم صلب…………………………………………….. 20<br />2-3-2-4- تحلیل دینامیكی غیر خطی……………………………………………………….. 23<br />2-3-3- معیارهای پذیرش…………………………………………………………………….. 23<br />2-3-3-1- معیارهای پذیرش روش­های غیر خطی……………………………………………. 23<br />2-4- روش طیف ظرفیت………………………………………………………………………. 29<br />2-5- تهیه طیف های ظرفیت و نیاز در فرمت ADRS……………………………………….<br />3-1- مقدمه…………………………………………………………………………………….. 37<br />3-2- تعاریف مدل های اولیه……………………………………………………………………. 37<br />3-3- بارگذاری ثقلی……………………………………………………………………………… 42<br />3-4- بارگذاری لرزه ای…………………………………………………………………….. 42<br />3-5- مدل سازی………………………………………………………………………………. 44<br />3-6- تحلیل……………………………………………………………………………………. 44<br />3-7- طراحی…………………………………………………………………………………… 45<br />3-8- معرفی شیوه تحلیل&nbsp; در پروژه…………………………………………………………..45<br />3-8-1- تحلیل استاتیکی غیرخطی…………………………………………………………. 45<br />3-8-2- هدف بهسازی……………………………………………………………………. 46<br />3-8-3- توزیع بار جانبی در تحلیل استاتیکی غیرخطی…………………………………. 46<br />3-8-3-1- معرفی و اختصاص مفاصل پلاستیک…………………………………………… 47<br />3-8-4- تعیین تغییرمکان هدف به روش ضرایب تغییرمکان………………………………..51</p><p><p style="direction: ltr; text-align: center;"><a href="http://zusa.ir/%d9%be%d8%a7%db%8c%d8%a7%d9%86-%d9%86%d8%a7%d9%85%d9%87-%d8%a7%d8%b1%d8%b4%d8%af-%d8%a8%d8%b1%d8%b1%d8%b3%db%8c-%d8%b1%d9%88%d8%b4-%d9%87%d8%a7%db%8c-%d8%aa%d8%ad%d9%84%db%8c%d9%84-%d8%ba%db%8c%d8%b1/"><img class="size-full wp-image-587311 aligncenter” src="http://ziso.ir/wp-content/uploads/2020/10/thesis-paper-95.png” alt="پایان نامه” width="400″ height="140″ /></a></p><p style="direction: ltr; text-align: center;"><br /></p>3-9- تحلیل دینامیكی غیرخطی…………………………………………………………… 51<br />3-10- ملاحظات خاص مدلسازی و تحلیل……………………………………………….. 54<br />3-9-1- تحلیل به روش دینامیکی غیرخطی……………………………………………. 55<br />3-9-2- شتاب نگاشت های مورد استفاده در آنالیز دینامیکی غیرخطی……………… 55<br />3-6-2-1- هم­پایه کردن PGA…………………………………………………………………<br />3-6-2-2- هم­پایه کردن طیف………………………………………………………………. 56<br />4-1- مقدمه………………………………………………………………………………… 57<br />4-2- تعیین تغییرمکان هدف به روش ضرایب تغییرمکان……………………………….. 57<br />4-3- تعیین تغییرمکان هدف به روش طیف ظرفیت…………………………………….. 58<br />4-4- منحنی ظرفیت سازه ها………………………………………………………….. 60<br />4-5- تحلیل به روش دینامیکی غیرخطی……………………………………………. 62<br />4-5-1- شتاب نگاشت های مورد استفاده در آنالیز دینامیکی غیرخطی……………. 63<br />4-5-2- همپایه کردن PGA…………………………………………………………………..<br />4-5-3- همپایه کردن طیف……………………………………………………………….. 64<br />4-5-4- مقادیر ماکزیمم تغییرمکان در نقطه کنترل…………………………………….. 66<br />4-5-5- تغییرمکان نسبی طبقات در تحلیل دینامیکی غیرخطی…………………….. 70<br />4-6- ارزیابی عملکرد سازه ها…………………………………………………………… 72<br />4-6-1- معیار کنترل عملکرد سازه ها……………………………………………………… 72<br />4-6-2- تعیین سطح عملکرد در تحلیل استاتیکی غیر خطی…………………………….. 72<br />4-6-3-تعیین سطح عملکرد در تحلیل دینامیکی غیرخطی تاریخچه……………………. 73<br />5-1- نتایج………………………………………………………………………………….. 78<br />5-2- پیشنهاد هایی برای تحقیقات آتی………………………………………………….. 79<br />مراجع…………………………………………………………………………………………… 80<br /><strong>چکیده:</strong><br />موضوع تحقیق حاضر بررسی سطح عملکرد و میزان دقت روش های مبتنی بر تحلیل استاتیکی غیر خطی و نیاز مقاوم سازی ساختمانهای فولادی با سیستم دوگانه قاب خمشی با مهاربند ضربدریو مهاربند 7 شکلهمگراطراحی شده با آیین نامه 2800 زلزله ایران(ویرایش سوم) به وسیله دستورالعمل بهسازی لرزه ای ساختمانهای موجود بر اساس هدف بهسازی مورد نیاز برای این ساختمانها می باشد.<br />به این منظور پلان هایی با تعداد طبفات 4، 8و 16 انتخاب شده و توسط آیین نامه 2800 زلزله ایران به روش استاتیکی معادل طراحی می شود. قاب بحرانی این ساختمانها تحت بهسازی مبنا و با دو روش استاتیکی غیرخطی و دینامیکی غیرخطی تاریخچه زمانی تحت شتاب نگاشت های مختلف به کمک نرافزار های ETABSو</p><p>یک مطلب دیگر :</p><p><p><a class="in-cell-link” href="https://shc1.ir/%d8%b1%d8%b3%d8%a7%d9%86%d9%87-%d9%88-%d8%a8%d8%b2%d9%87%da%a9%d8%a7%d8%b1%db%8c-%d8%a7%d8%b2-%d8%af%db%8c%d8%af%da%af%d8%a7%d9%87-%d8%ac%d8%a7%d9%85%d8%b9%d9%87-%d8%b4%d9%86%d8%a7%d8%b3%db%8c-%d8%a7/” target="_blank” style="font-family: Calibri, Arial; font-size: 11pt;">رسانه و بزهکاری از دیدگاه جامعه شناسی انحراف</a></p><p>&nbsp;SAP2000ver12تحلیل و مطابق با دستورالعمل بهسازی لرزه ای کنترل می -گردد.</p>در نهایت در مورد ساختمانهای طراحی شده با آیین نامه 2800 بدین نحو نتیجه گیری می شود که تحلیل استاتیکی غیر خطی از دقت کافی در قیاس با تحلیل دینامیکی غیر خطی بر خوردار نیست.<br /><strong>فصل اول: کلیات</strong><br /><strong>1-1- لزوم انجام تحلیل های غیرخطی</strong><br />با توجه به اینكه اكثر سازه های متداول در هنگام زلزله وارد ناحیه غیرخطی شده واز خود رفتار غیرارتجاعی نشان می دهند لذا با استفاده از روش های مرسوم و سنتی آیین نامه ها كه بر پایه تحلیل های خطی استوار است نمی توان كنترلی بر رفتار سازه پس از ورود آن به ناحیه غیر ارتجاعی داشت. از طرف دیگر تحلیل دینامیكی غیرخطی كه اغلب به عنوان دقیق ترین روش در بررسی رفتار سازه ها در حین زلزله از آن یاد می شود، به علت پرهزینه و وقت گیر بودن، نمی تواند مناسب برای مسایل كاربردی و مهندسی باشد<strong>.</strong>&nbsp;در این میان ایدة<strong>­­&nbsp;</strong>تحلیل استاتیكی غیرخطی بارافزون مطرح شده است كه ضمن اینكه مشكلات و پیچیدگی های روش دینامیكی غیر خطی را ندارد، می تواند با تقریب قابل قبولی رفتار سازه را در ناحیة غیرارتجاعی مورد ارزیابی قرار دهد. تحلیل استاتیکی غیرخطی پایه روش طراحی بر اساس عملکرد می باشد. طراحی براساس عملکرد درحقیقت به روشی اطلاق می شود که در آن معیار طراحی سازه به صورت دستیابی به یک رفتار و عملکرد هدف تشریح می شود. این روش تقابلی است با معیار طراحی سازه های مرسوم که در آن معیار طراحی سازه تنها با محدودکردن نیروهای اعضاء که ناشی از اعمال مقادیر مشخصی از بارهای طراحی می باشند تعریف می گردد<strong>.</strong>&nbsp;در این روش با سطح بندی خطر زمین لرزه به کارفرما این اختیار داده می شود تا میزان خطر پذیری را برای طراح سازه انتخاب کند. از سوی دیگر با قابل پیش بینی شدن رفتار سازه با خطر پذیری معین می توان نسبت به کاربری و آسیب پذیری سازه پس از زلزله تصمیم گرفت.<br /><strong>2-1- موضوع پایان نامه</strong><br />در جریان یک پروژه بهسازی، در ابتدا نیاز به جمع آوری اطلاعات از سازه موجود می باشد، در ادامه لازم است سازه مورد نظر به طریقی مدل سازی و تحلیل شود، تا رفتار و عملکرد سازه هنگام زلزله مشخص گردد. حال برای<br />کنترل نتایج به دست آمده نیاز به معیارهای خاصی می باشد تا در نهایت لزوم یا عدم لزوم به بهسازی برای ساختمان های موجود مشخص شود و پس از انجام کلیه این اقدامات و با در نظر گرفتن نتایج حاصل و در صورت نیاز به بهسازی، روش اجرایی بهسازی تعیین گردد.<br />با توجه به مطالب بیان شده و آغاز اقدامات مورد نیاز جهت بهسازی لرزه ای ساختمان های موجود در کشور، دستورالعملی توسط سازمان مدیریت و برنامه ریزی کشور تهیه شده است که مبنای مطالعات بهسازی ساختمان- ها قرار گیرد. این دستورالعمل با استفاده از آیین نامه ای است که اخیراً در آمریکا جهت بهسازی ساختمان ها تدوین و توصیه شده است. این آیین نامه از طرف انجمن مهندسین عمران امریکا (ASCE) و آژانس مدیریت بحران فدرال (FEMA) تهیه شده و تحت عنوانFEMA440&amp; FEMA356 &amp; FEME273 منتشر گردیده است.<br />هدف اصلی این پایان نامه ارزیابی کارایی شیوه های تعیین سطح عملکرد سازه، مطرح شده در دستورالعمل بهسازی لرزه در برآورد سطح عملکرد ساختمان فولادی دارای سیستم دوگانه مهاربند ضربدری و قاب خمشی می باشد. در واقع میزان دقت تحلیل استاتیکی با تحلیل دینامیکی غیرخطی مقایسه می گردد. همچنین به این پرسش پاسخ داده می شود که ساختمان طراحی شده با آیین نامه 2800 ویرایش سوم در چه سطحی از عملکرد بر اساس ضوابط دستورالعمل بهسازی لرزه ای قرار می گیرد و آیا این که ساختمان مورد نظر هدف آیین نامه 2800 را برآورده می کند. روش کار در پایان نامه به این گونه است که سه ساختمان متقارن و منظم4، 8، 16 طبقه فولادی سیستم دوگانه قاب خمشی – مهاربند ضرب دری و مهاربند 7 شکل &nbsp;، با نرم افزار ETABS به صورت سه بعدی (3D) بر اساس آیین نامه 2800 ویرایش سوم، و بر روی خاک نوع 2 در برابر زلزله طراحی شده اند. سپس این سه ساختمان به همان صورت سه بعدی در نرم افزار ETABSver9 تحلیل استاتیکی غیر خطی بارافزون (Pushover) گشته و نتایج حاصل از آن با تحلیل دینامیکی غیر خطی تاریخچه زمانی مدل ها در نرم افزار SAP2000ver12 مورد مقایسه قرار گرفته اند.<br /><strong>فصل دوم: مروری بر مفاهیم ومبانی بهسازی لرزهای ساختمان</strong><br /><strong>1-2- مقدمه</strong><br />درسال<strong>­</strong>های اخیر باتوجه به ارزش اقتصادی ساختمانهای موجود، سعی براین بوده است كه پایداری ساختمانها از دید حداقل های لازم مورد بررسی قرار گرفته و در همین رابطه دستور<strong>­</strong>العمل­های مقاوم سازی تدوین شده<strong>­</strong>اند. با توجه به فلسفه این دستورالعملها ضرایب ایمنی درنظر گرفته شده درآئین نامه های طراحی باید قاعدتاً از ضرایب ایمنی این دستورالعملها بزرگتر باشد. باتوجه به بحث فوق انتظار می رود كه سازه های طراحی شده مطابق آئین نامه های طراحی معمول، توسط دستورالعمل مقاوم سازی هم تایید شوند. در واقع روش<strong>­</strong>های مقاوم سازی سازه ها كه در دستورالعمل­هایی&nbsp; نظیرFEMA356 و دستورالعمل مقاوم سازی كشورمان به تفصیل بیان شده اند را میتوان روش­هایی دقیقتر و منطبق بر طراحی سازه های موجود دانست.<br /><strong>2-2- مروری بر مقدمات بهسازی لرزه ای</strong><br />در این بخش به مروری برخی از تعاریف اولیه و مقدمات بهسازی لرزه ای، سطوح عملكرد ساختمان و سطوح خطر زلزله از دید دستور العمل مقاوم سازیپرداخته می شود. به علت خلاصه کردن تعاریف و روشها برخی از این تعاریف و روشها در این پایان نامه نیامده که در صورت نیاز به دستورالعمل بهسازی ارجاع داده می شود.<br /><strong>2-2-1- هدف های بهسازی</strong><br /><strong>1-1-2-2- بهسازی مبنا</strong><br />در بهسازی مبنا انتظار می رود كه تحت زلزله « سطح خطر –1 » ایمنی جانی ساكنین تأمین گردد.<br /><strong>2-1-2-2- بهسازی مطلوب</strong><br />در بهسازی مطلوب انتظار میرود هدف بهسازی مبنا تأمین گشته و علاوه برآن تحت زلزله« سطح خطر- 2 » ساختمان فرو نریزد.<br /><strong>3-1-2- بهسازی ویژه</strong><br />در بهسازی ویژه نسبت به بهسازی مطلوب عملكرد بالاتری برای ساختمان مدنظر قرار می گیرد. بدین منظور سطح عملكرد بالاتری برای ساختمان تحت همان سطح خطر زلزله مورد استفاده در بهسازی مطلوب در نظر گرفته شده یا با حفظ سطح عملكرد مشابه با بهسازی مطلوب سطح خطر زلزله بالاتری مد نظر قرار گرفته می شود.<br /><strong>4-1-2- بهسازی محدود</strong><br />در بهسازی محدود عملكرد پائین تری از بهسازی مبنا در نظر گرفته می شود، به گونه ای كه حداقل یكی از اهداف زیر بر آورده شود:</p>

 به‌شدت به عرض دیوار بستگی دارد که. با افزایش عرض دریچه عرض گسیختگی افزایش می­یابد که با میل عرض دریچه به بینهایت سطح گسیختگی منطبق بر سطح گسیختگی تئوری می­شود؛ و درنهایت مشاهده می­شود، خاک پشت دریچه از خود مقاومت قوسی نشان می­دهد.

فصل اول: کلیات پژوهش
1-1- مقدمه
وجود هرگونه سازه در داخل توده­­ی زمین باعث تغییر در توزیع تنش[1] در محل شده و انتظار می­رود که این تغییر نیرو بر سازه تأثیر بگذارد. علاوه بر این زمین واقع در مجاورت یک سازه می­تواند تا حد زیادی ظرفیت باربری آن را در مقایسه با سازه­ی مشابه غیره­مدفون افزایش دهد. در طراحی سازه­هایی از قبیل تونل­ها، گودال­ها، مجاری آب­های زیرزمینی و غیره نمی­توانند از آیین­نامه­های موجود برای سازه­هایی که بر روی زمین احداث می‌شوند، تبعیت کنند. سه عامل اصلی برای تصمیم­گیری این‌که چه سطح از تنش تغییر می­کند (مک نالتی[2]، 1965): خواص فیزیکی سازه، رفتار بار-تغییرشکل سازه، خواص زمین اطراف سازه به‌خصوص قابلیت انتقال نیروها می­توان اشاره کرد. این روند که باعث می­شود، تنش­ها بر یا به اطراف سازه­ی مدفون شده در خاک از میان تنش­های برشی ناشی از جابجایی­های مرتبط انتقال پیدا کنند پدیده قوسی یا همان Arching گویند.
1-1-1- پیشینه تحقیق
پدیده قوسی[1] حدود 150 سال پیش شناخته شد. تحقیقات در این زمینه به‌صورت پراکنده و اغلب نسبت به یک ناحیه­ی خاص که از اهمیت ویژه­ای در آن نقطه زمانی داشته است، می­باشد. پدیده قوسی در بسیاری از مسائل ژئوتکنیک وجود دارد. درحالی‌که پدیده قوسی در ابتدا در زمینه­ غیره ژئوتکنیکی شناخته شده و مورد بررسی قرار گرفته است. در حدود سال 1800 مهندسان نیروی نظامی فرانسه اقدام به طراحی مخزن سیلو نمودند (فلد[2]، 1948). آن‌ها یافتند که قسمت انتهایی سیلو فقط بخشی از وزن کل مصالح بالای آن را حمل می­کند و دیوارهای کناری در معرض نیروی بیشتری نسبت به آنچه که انتظار می­رفت، قرار دارند. آزمایشات نشان دادند که اگر مقطع کوچکی از قسمت انتهایی جدا شده و به پایین حرکت کند، نتیجه می­شود که نیروی وارده به مقطع بسته به ارتفاع مصالح داخل مخزن دارد. آن‌ها نتیجه گرفتند، یک قوس در بالای مقطع جابجا شده، شکل می­گیرد. بعد از سال 1800 این دانش از رفتار در مخزن سیلوها در طراحی سیلوها برای مصالح دانه­ای و سایر مصالح ذره­­ای به کار برده شد. در محدوده­ی سال 1910 پروژه مهم زهکشی زمین در میدوست جریان یافت (اسپانگلر و هندی[3]، 1973). مهندسان یافتند که بسیاری از لوله­های زهکش پس از نسب و ریختن خاک، دچار شکست شده­اند. آنسون مارستون، تحقیقات وسیعی در دانشگاه ایالت آیووا در رابطه با نیروهای وارده بر لوله‌های دفن شده در زمین انجام داد و دریافت که به دلیل انعطاف‌پذیر بودن لوله­ها و همچنین روند نسب، مقدار نیرو تغییر می­کند؛ که این تغییر به پدیده قوسی نسبت داده شد. در سال 1920 تا

یک مطلب دیگر :

پایان نامه درباره سرمایه فکری/:روشهای ارزشیابی عملکرد

 1930 اهمیت آرچینگ در اطراف تونل­ها شناخته شد؛ که این از آزمایشات متعددی که حتی امروزه نیز مورد استفاده قرار می­گیرد حصول گردید (سزچی[4]، 1996). در 1936 ترزاقی با انجام آزمایش‌هایی تئوری آرچینگ را مطرح کرد. در سال 1960 زمانی که وزارت دفاع آمریکا حمایت قابل‌توجهی از تحقیقات در زمینه اندرکنش خاک-سازه کرد. تکنیک­هایی برای طراحی سخت­تر استحکامات نظامی نیاز شد و شناخته شد که پدیده قوسی این امکان را می­دهد که از زیر، زمین برای محافظت از حملات نظامی هسته­ای که باعث نابودی کلیه سازه­های سطحی می­شود، بهره برد؛ که اغلب این تحقیقات را سیمپسون در سال 1964 در زمینه اندرکنش خاک-سازه ارائه داد. امروز با گذشت بیش از 50 سال از ارائه تئوری آرچینگ به دلیل اهمیت این پدیده در طراحی سازه­ای و مسائل ژئوتکنیکی در سازه­های مدفون هنوز تحقیقات در این زمینه ادامه دارد.

در ایران نیز دکتر مسعود مکارچیان با ساخت دستگاه اندازه‌گیری نیروی قوس زدگی، این پدیده را در مصالح ماسه­ای مورد بررسی قرار داد. درنهایت شاخص قوس زدگی با توجه به میزان دانسیته نسبی مصالح ماسه­ای و نیز ارتفاع نمونه خاک در سلول آزمایش ارائه شد. همچنین دکتر جمشید صدر کریمی در سال 1389 در دانشگاه تبریز این پدیده را در حالتی که شکل دریچه­ها دایره و با قطرهای متفاوت بوده، مورد بررسی قرار داد تا تأثیر شکل دریچه و ابعاد آن بر پدیده قوسی را به دست آورد.
2-1-1- پدیده قوسی (Arching)
عمومی­ترین تعریف قابل‌قبول برای پدیده قوسی توسط ترزاقی[1] (1943) ارائه گردید، به‌طور خلاصه اگر قسمتی از دریچه­ی صلب توده­ی خاک رو به پایین حرکت کند شکل (1-6)، خاک مجاور، با توجه به باقی‌مانده از توده خاک، حرکت می‌کند. این حرکت با استفاده از تنش­های برشی که باعث کاهش فشار در قسمت پایین آمده­ی دریچه و افزایش فشار در اطراف قسمت صلب می­شود، مقاومت می­کند. این تئوری پدیده قوسی می­باشد و این اغلب زمانی اتفاق می­افتد که یک قسمت از دریچه نسبت به قسمت­های مجاور پایین‌تر باشد. بسته به حرکت­های مرتبط سازه و زمین اطراف می­توان پدیده قوسی را به دو حالت محرک و مقاوم مجزا نمود. شکل (1-1) آرچینگ محرک[2] را نشان می­دهد (که در بعضی موارد آرچینگ مثبت خوانده می­شود). سازه­ی موجود درون توده خاک اگر تغییرشکل پذیرتر از خاکی که آن را احاطه کرده، باشد، (هنگامی‌که بار بیش از حد و یا اضافی به سیستم اعمال گردد، سازه تغییر شکل بیشتری نسبت به خاک خواهد داد (شکل 2-1)). تنش­ها بر روی سازه کمتر از تنش­های ژئواستاتیک می­باشد، در صورتی که تنش­ در خاک اطراف سازه بزرگ‌تر است. شکل (3-1) آرچینگ مقاوم[3] را نشان می­دهد (که اغلب به‌عنوان آرچینگ منفی شناخته می­شود). در اینجا خاک نسبت به سازه تراکم­ پذیرتر می­باشد و از این­ رو باعث افزایش فشار کل بر روی سازه و همچنین کاهش فشار در خاک اطراف آن می­شود (شکل (4-1)).
اگر خواص نیرو-تغییر­شکل سازه و خاک یکسان باشد، تنش در خاک و بر روی سازه از جنس ژئواستاتیک خواهد بود و هیچ­گونه آرچینگی اتفاق نمی­افتد. وقوع چنین وضعیتی بعید است، به این دلیل که میان رفتار مصالح سازه ازجمله آهن و فولاد با خاک تفاوت وجود دارد. خصوصاً سازه­های زیرزمینی که تغییرشکل­شان یکنواخت نیستند که سبب می­شود توزیع تنش پیچیده­تر شود. بازتوزیع تنش ناشی از جابجایی­های مرتبط رفتاری است که اغلب در هر دو خاک درشت­دانه و چسبنده مشاهده می­شود. ولی بقاع این بازتوزیع به‌هرحال برای این دو نوع خاک یکسان نیست. در خاک­های ریزدانه پدیده خزش سبب می­شود تنش­ها در طول زمان کاهش‌یافته و اغلب بزرگی آن نزدیک به وزن بیش­بارگذاری شود (پک[4]، 1969). پروسه کاهش تنش مشابهی نیز می­تواند در خاک­های درشت­دانه زمانی که تحت عوامل خارجی ازجمله ارتعاشات هستند، رخ دهد. به هرحال، دامنه کاهش معمول مشاهده شده ناشی از آرچینگ برای خاک­های درشت­دانه از مقادیر ناچیز تا فقط حدود 15 درصد است (اسپانگر و هندی 1973). ازنقطه‌نظر طراحی، کاهش بار مفید طولانی‌مدت به دلیل پدیده قوسی می­تواند تنها در خاک­های دانه­ای پیش‌بینی شود.
3-1-1- تونل
پوشش تونل[1] هرگز در معرض مقدار باری که توسط تنش اولیه­ی حاکم بر زمین پیش‌بینی‌شده، قرار نمی­گیرد. خوشبختانه مقدار تنش اولیه با تغییرشکل زمین که به هنگام حفاری و اغلب پس از نسب و راه­اندازی رخ می­دهد کاهش می­یابد. این کاهش تنش ناشی از تغییر شکل زمین پدیده قوسی را نشان می­دهد. ازآنجاکه تغییرشکل زمین متصل است به تغییرشکل پوشش، بنابراین مقدار بار وارده به پوشش بستگی به تغییرشکل خود آن دارد. به این دلیل است که همیشه اندرکنش خاک و سازه و تشکیل مشکل اصلی برای طراحی به‌عنوان بار وارده، متغیر مستقل نیست؛ بنابراین سؤال این نیست که چه فشاری به پوشش تونل اعمال می­شود، بلکه مسئله­ی اصلی این است که چه رابطه­ای بین فشار و تغییرشکل وجود دارد.
ترزاقی از تئوری فوق‌الذکر در طراحی تونل استفاده کرد (ترزاقی 1943). ناحیه تنش در خاک بالای تونل مشابه است با ناحیه تنش خاک در بالای نوار تسلیم. ترزاقی فرض کرد که عملکرد خاک مجاور تونل به هنگام ساختن به سمت جوانب تونل می­باشد. این، شرایط فشار محرک با سطوحی از ناحیه­ی تسلیم با سطح شیب­دار در حدود  ایجاد می­کند. ناحیه تسلیم در اطراف تونل و منشور تسلیم  در شکل (1-5-a) نشان داده شده است. در سطح بام تونل، عرض نوار تسلیم ( ) برای تونل­های مستطیلی برابر است با.
شکل (1-5-b) نشان دهنده تنش قائم در خاک بالای تونل می­باشد.
[1] Tunnel
[1] Terzaghi
[2] Active Arching
[3] Passive Arching

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...