2-1-2- تابع تبدیل یا تابع محركه. 42
2-1-3- ساختار شبکه. 44
2-1-3-1-  شبکه های چند لایه. 45
2-1-4- یادگیری.. 47
2-1-4-1-  انواع یادگیری.. 47
2-1-4-2-  شبكه آدالاین.. 48
2-1-4-3-  قانون یادگیری ویدرو-هوف یا LMS. 49
2-1-4-4-  قانون یادگیری پرسپترون. 49
2-1-4-5-  قانون یادگیری گرادیان کاهشی.. 50
2-1-5- الگوریتم پس انتشار. 51
2-1-5-1-  اصول الگوریتم پس انتشار خطا 52
2-1-5-2-  الگوریتم لونبرگ… 53
2-2-  مقدمه‌ای بر الگوریتم ژنتیك… 54
2-2-1- ساختار الگوریتم ژنتیك… 55
2-2-2- كدگذاری.. 58
2-2-2-1-  كدگذاری دو دویی.. 59
2-2-2-2-  كدگذاری جایگشتی.. 59
2-2-2-3-  كدگذاری مقداری.. 60
2-2-3- انتخاب   60
2-2-3-1-  روش چرخ گردان. 61
2-2-3-2-  روش رتبه بندی.. 62
2-2-3-3-  روش مسابقه ای.. 63
2-2-3-4-  نخبه گزینی.. 63
2-2-4- تولید مثل.. 64
2-2-4-1-  تقاطع تك نقطهای.. 64
2-2-4-2-  تقاطع دو نقطهای.. 65
2-2-4-3-  تقاطع چند نقطهای.. 66
2-2-4-4-  تقاطع یكنواخت… 66
2-2-5- جهش    67
2-2-5-1-  وارون كردن. 67
2-2-5-2-  تبادل. 68
2-2-5-3-  معكوس كردن. 68
2-2-6- تابع هدف و تابع برازندگی.. 69
2-2-7- پارامترهای الگوریتم ژنتیك… 70
2-2-8- تفاوت الگوریتم ژنتیك با دیگر روشهای جستجو. 73
3- مدل‌سازی فرآیند به کمک نرم‌افزار المان محدود. 75
3-1-  مقدمه  76
3-2-  تحلیل المان محدود خمکاری فشاری لوله. 77
3-2-1- مقدمه. 77
3-2-2- مدلسازی هندسی.. 77
3-2-3- تعریف خواص مکانیکی.. 79
3-2-4- مراحل تحلیل المان محدود خمکاری فشاری لوله. 86
3-2-5- شرایط تماسی و اصطکاک… 86
3-2-6- قیود و بارگذاری.. 87
3-2-7- شبکه‌بندی اجزای مدل شده 88

پایان نامه

 

4- آزمایش‌ها و کارهای تجربی.. 90
4-1-  مقدمه  91
4-2-  تست کشش لوله. 91
4-3-  تست کشش الاستومر. 96
4-4-  ساخت قالب… 100
4-5-  تست خم لوله. 101
5- ارائه نتایج و بحث… 108
5-1-  مقدمه  109
5-2-  مقایسه نتایج شبیه‌سازی عددی و تجربی.. 110
5-2-1- نیروی‌های شکل‌دهی.. 110
5-2-2- توزیع ضخامت و کرنش‌ها 112
5-2-3- شکل لوله خم. 119
5-3-  بررسی اثر پارامترهای فرایند بر توزیع ضخامت در شعاع خارجی خم. 121
5-4-  طراحی آزمایش… 124
5-4-1- بررسی میزان تاثیر پارامترها بر روی خروجی.. 125
5-5-  ویژگی‌های شبکه عصبی استفاده شده 131
5-5-1- ویژگی‌های شبکه عصبی آموزش داده شده برای خم لوله برنجی.. 133
5-5-2- ویژگی‌های شبکه عصبی آموزش داده شده برای خم لوله فولادی.. 140
5-6-  ویژگی‌های الگوریتم ژنتیک به کار گرفته شده 146
5-6-1- بهینه‌سازی خم لوله برنجی.. 148
5-6-2- بهینه‌سازی خم لوله فولادی.. 150
5-6-3- مقایسه نتایج بهینه‌سازی.. 152
6- نتیجه‌گیری و پیشنهادات… 155
6-1-  نتیجه‌گیری.. 156
6-2-  پیشنهادها برای ادامه کار. 157
7- مراجع.. 159
8- پیوست‌ها 164

در گذشته خمکاری لوله یک هنر تلقی می‌شد و خمکاری اکثراً توسط افراد ماهری که در طی چندین سال تجربه کسب کرده‌ بودند انجام می‌گرفت. در چند دهه اخیر تحقیقات گسترده‌ای در زمینه خمکاری لوله‌ها به منظور ایجاد دانش پایه در این زمینه صورت گرفته است. به کمک کارهای تجربی، تحلیل‌های تئوری و شبیه‌سازی‌های

یک مطلب دیگر :

تحقیق درمورد مسئولیت کیفری

 عددی درک بهتری از نحوه تغییر شکل لوله در حین خمکاری فراهم شده است.

روش‌های مختلفی جهت خمکاری لوله‌ها وجود دارد. هر یک این روش‌ها با توجه به نوع و کیفیت خمی که می‌توانند تولید کنند دارای کاربردها و محدودیت‌هایی می‌باشند. انواع روش‌های خمکاری لوله‌ها شامل خمکاری برشی[1]، خمکاری کششی[2]، خمکاری فشاری با بازوی متحرک[3]، خمکاری پرسی[4]، خمکاری فشاری[5] و خمکاری غلتکی[6] و غیره می‌باشند. انتخاب یک روش خمکاری بستگی به : 1) کیفیت خم و نرخ تولید مورد نظر و 2) جنس لوله، شعاع خم نسبی(R/D)، قطر نسبی لوله(D/t) و دقت لازم (D قطر خارجی، t ضخامت و R شعاع خط مرکزی خم می‌باشند) دارد. به عنوان مثال برای خمکاری لوله‌های جدار نازک با نرخ تولید زیاد و دقت بالا، مناسب‌ترین گزینه استفاده از روش خمکاری کششی می‌باشد.
در موتور هواپیماها و فضاپیماها، قطعات لوله‌ای با شعاع خم كوچك از جنس‌‌های آلومینیوم، تیتانیوم و آلیاژهای با استحكام بالا به صورت فراوان به كار گرفته می‌شوند. شعاع خم این قطعات لوله‌ای در برخی موارد در حدود قطر خارجی آن‌ها می‌باشد كه با روش‌های رایج خمكاری سرد لوله‌ها قابل تولید نیستند. در این موارد لازم است روش‌های جدیدی جهت تولید خم با كیفیت مطلوب مورد استفاده قرار گیرند. یكی از این روش‌ها، خمكاری فشاری لوله می‌باشد كه در آن خمكاری تحت فشار داخلی مندرل لاستیکی انجام می‌گیرد. این روش در مقایسه با سایر روش‌های خمکاری لوله‌ها دارای مزایایی مانند دقت و بازدهی بالا، هزینه پایین و تولید خم با کیفیت خوب می‌باشد ‏[1].
        1-1-    تعاریف و پارامترهای خمكاری
در شکل (‏1‑2) پارامترهای خمكاری لوله نشان داده شده است. هر یك از این پارامترها را می‌توان به صورت زیر تعریف نمود ‏[2].

  • سطح خمش: سطحی كه از شعاع خط مركزی لوله (شعاع خم) عبور می كند و عمود بر جهت چرخش خم می باشد.
  • خط مركزی لوله (CL): خط ممتدی كه هر نقطه واقع در مركز سطح مقطع لوله را به هم وصل می كند.

شکل (‏12): پارامترهای رایج در خمكاری لوله

  • دیواره خارجی خم[7]: كمان/لبه بیرونی خم می باشد.
  • دیواره داخلی خم[8]: كمان/لبه داخلی خم می باشد.
  • شعاع خط مركزی (CLR): فاصله بین مركز چرخش خم و خط مركزی لوله می‌باشد كه شعاع خم نیز نامیده می‌شود. در صنعت خمكاری معمولاً شعاع خم بر حسب ضریبی از قطر خارجی لوله (OD) و به صورت mD بیان می شود. به عنوان مثال وقتی لوله ای به قطر خارجی 30 میلی متر با 5D CLRخم می شود یعنی اینكه شعاع خم برابر 45 میلی متر می باشد.

 

 

(‏1‑1)

  

  • انحنای خم: عكس شعاع خط مركزی را انحنای خم می گویند.

 

 

(‏1‑2)    

مماس: ناحیه مستقیم لوله در دو انتهای خم را مماس می گویند و می تواند هر مقداری داشته باشد. لوله خم شده ای كه در هر دو انتها فاقد مماس باشد تحت عنوان لوله با مماس صفر خوانده می شود.

  • قطر لوله: هرگاه قطر لوله به تنهایی به كار رود منظور قطر خارجی لوله می باشد.

جدول (‏11): پارامترهای خمكاری

 

 

 

 

 

 

 

 

 

نماد توضیح
CLR شعاع خط مركزی
CL خط مركزی لوله
OD قطر خارجی لوله
ID قطر داخلی لوله
DOB زاویه خم
t ضخامت اولیه جدار لوله
to ضخامت دیواره خارجی لوله در محل خم
ti ضخامت دیواره داخلی لوله در محل خم
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...