سنتز غربال های مولکولی سیلیکوآلومینو فسفات در ابعاد نانو و ... |
دانشگاه علوم و فنون مازندران
پایاننامه
مقطع كارشناسی ارشد
رشته: مهندسی شیمی
عنوان: سنتز غربال های مولکولی سیلیکوآلومینو فسفات در ابعاد نانو و کاربردهای آن -در الکتروشیمی-
اساتید راهنما: سید کریم حسنی نژاد درزی، مصطفی رحیم نژاد نجارکلایی
تابستان 1393
برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود
(در فایل دانلودی نام نویسنده موجود است)
تکه هایی از متن پایان نامه به عنوان نمونه :
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
چکیده
در این پروژه سعی بر این بود گامی کوچک در راستای سنتز غربال مولکولی سیلیکوآلومینوفسفات در ابعاد نانو و بکارگیری آن در پیلهای سوختی با سوخت متانول برداشته شود. لذا در این راه نانو سیلیکوآلومینوفسفات در شرایط هیدروترمال در شرایط بهینه تولید گردید. در ادامه از تکنیکهای XRD، FT-IR, SEM برای شناسایی غربالهای مولکولی استفاده شد. نتایج طیف XRD نشان داد که سنتز غربال مولکولی سیلیکوآلومینوفسفات موفقیت آمیز بوده و میانگین اندازه ذرات تقریباً 35 نانومتر تخمین زده شد. نمونهی سنتز شده در پیلهای سوختی متانول مستقیم به کار برده شد. در غیاب متانول، مقدار ضریب انتقال الکترون (α) برابر با 5547/0، میانگین ثابت بار (ks) برابر با 023/0 (1/s)، میانگین پوشش سطح الکترود برابر با 7-10 × 89/9 و نیز در حضور متانول مقدار سرعت کاتالیزوری برابر با 104 616/4 و ضریب نفوذ آشکار برابر با 848 /4 بدست آمد.
کلمات کلیدی: نانو سیلیکوآلومینوفسفات، سنتز هیدروترمال، غربال مولکولی، ولتامتری چرخهای، پیل سوختی متانول مستقیم
فهرست مطالب
فصل اول – مقدمه و کلیات تحقیق
مروری کلی بر غربال مولکولی سیلیکوآلومینوفسفات.. 2
- زئولیتهای طبیعی………………………………….. 6
- سنتز غربالهای مولکولی………………… 6
- اصلاح غربالهای مولکولی سیلیکوآلومینوفسفاتی. 9
- شناسایی غربالهای مولکولی سیلیکوآلومینوفسفاتی.. 11
-
- روش میکروسکوپ الکترونی………………………….. 11
- روش پراش اشعه X (XRD) …………………………… 12
- روش FTIR 12
-
- مقدمهای بر پیلهای سوختی……………… 12
- الکترودهای اصلاح شده و فرایند الکتروکاتالیزور.. 15
انواع کاتالیزورهای مورد استفاده در الکترواکسیداسیون آندی متانول…………………………….. 18
- الکتروکاتالیزورهای متانول در محیط اسیدی……………….. 18
1-7-2. الکتروکاتالیزورهای متانول در محیط قلیایی 18
- اندازهگیری الکتروشیمیایی…………….. 19
- هدف از پژوهش……………………….. 19
فصل دوم – ادبیات و پیشینه تحقیق
- تاریخچهی پیل سوختی………………….. 21
- مروری بر تحقیقات الکتروکاتالیزوری…….. 22
تاریخچهی مواد غربالهای مولکولی……….. 23
- زئولیتهای آلومینو سیلیکاتی و غربالهای مولکولی سیلیسی…… 23
فصل سوم – روش تحقیق
مواد اولیه و تجهیزات آزمایشگاهی………. 30
- مواد اولیه 30
تجهیزات آزمایشگاهی…………………………………. 32
- دستگاه پتانسیواستات/گالوانواستات……….. 32
سنتز و ساخت………………………… 33
- سنتز نانو سیلیکوآلومینوفسفات…………………. 33
- ﺳﺎﺧﺖ اﻟﻜﺘﺮوﻛﺎﺗﺎﻟﻴزور……………………. 34
روش ارزیابی عملکرد الکتروکاتالیزوری…… 35
- مقایسه الکترود مربوطه با الکترود خمیر کربن…………. 36
فصل چهارم –
یک مطلب دیگر :
مزایای استفاده از کتاب های صوتی
محاسبات و یافتههای تحقیق
-
تعیین خصوصیات کاتالیزورهای سنتزی……… 39
- آنالیز XRD 39
- آنالیز FESEM 40
- آنالیز FTIR 42
ارزیابی عملکرد الکتروکاتالیزورها……… 44
- آنالیز الکتروشیمی الکترودهای اصلاح شده………………… 47
- اکسیداسیون الکترولیت متانول در سطح الکترود اصلاح شده 54
- ارزیابی کرنوآمپرومتری……………………… 58
- بررسی عملکرد و پایداری الکترود Ni-SAPO/CPE. 63
فصل پنجم – نتیجه گیری و پیشنهادات
- غربال مولکولی کریستال نانو سیلیکوآلومینوفسفات. 66
- الکترود اصلاح شده با نانوسیلیکوآلومینوفسفات سنتز شده 66
- پیشنهادات……………………………………………………………………………… 67
پیوست – منابع و ماخذ…………………….. 68
چکیده انگلیسی…………………………… 72
فهرست شكلها
شکل1-1: واحدهای TO4 در غربال مولکولیهای زئولیتی و آلومینوفسفاتی……………………………. 3
شکل 1-2: ساختار اتمی شبکههای CHA(a), MFI(b), AFI©, DON(d)……………………………. 5
شکل1-3: روش سنتز قالبی و قالبهای رایج در آن: 1. تک مولکول، 2. مولکول دوگانه دوست (دارای یک رشتهی آلی چربی دوست (قرمز) و یک سر آب دوست (آبی): Amphiphile))و 3. مایسل (خوشهای از مولکول های دوگانه-دوست: Micelle)) و 4. مواد پیچیدهتر، 5. یک ساختار کروی، 6. دستهای از ساختارهای کروی………………………………. 9
شکل 3-1: نمایی از نحوهی فعالیت پتاسیواستات…………………………………………………………….. 32
شکل 4-1: الگوی XRD غربال مولکولی نانوساختار SAPO………………………………………………. 39
شکل 4-2: الگوی XRDغربال مولکولی نانوساختار NiSAPO……………………………………………. 40
شکل 4-3: تصویر SEM غربال مولکولی نانوساختار SAPO………………………………………………. 41
شکل 4-4: تصویر SEM غربال مولکولی نانوساختار NiSAPO…………………………………………… 42
شکل 4-5: آنالیز FTIR غربال مولکولی نانو ساختار SAPO …………………………………………….. 43
شکل 4-6: آنالیز FTIR کاتالیزور نیکل SAPO……………………………………………………………… 43
شکل 4-7: ولتامتری چرخهای الکترود الف CPE و ب الکترود اصلاح شده 25%SAPO/CPE در محلولmM 10 پتاسیم فری سیانید وM 1/0 KCl با سرعت اسکنmV/S 20 و pH=7……………………44
شکل4-8: ولتامتری چرخهای الکترود SAPO/CPE 25% در محلول در محلولmM 10 پتاسیم فری سیانید وM 1/0 KCl در سرعت اسکنهای بالاتر از 350 میلی ولت برثانیه و شکل الحاقی در سرعت اسکنهای کمتر از 350 در همان شرایط………………………………………………………………………………………..45
شکل 4-9 :شکل برحسب برای ولتامتری چرخهای اکسیداسیون K4Fe(CN)6 در صفحهی (b)SAPO/CPE و (a) CPE با سرعت اسکنهای مختلف……………………………………………………………..47
شکل 4-10: ولتامتری چرخهای الکترود (a)CPE و الکترود SAPO/CPE 25% (b) بعد از قرارگرفتن در محلول 1/0 مولار نیکل کلراید و به همراه ولتامتری چرخهای قبل از گذاشتن الکترودها در محلول 1/0 مولار نیکل کلراید…………………………………………………………………………………………………………………….48
شکل4-11: مقایسهی شدت جریان پیک آندی الکترودهای اصلاح شده در حضور و در غیاب متانول…..49
شکل 4-12: a چرخه ولتامتری Ni/NSAPO/CPE در سرعت اسکنهای کمتر از 300میلیولت بر ثانیه در محلول 1/0 مولار NaOH . b شکل Ep بر حسب Log υ برای پیکهای آندی (a) و کاتدی (b) ولتامتری چرخهای نمایش داده شده در قسمت a . c وابستگی جریانهای پیکهای آندی و کاتدی به سرعت اسکن در سرعت اسکنهای کمتر(5 تا 75 میلیولت بر ثانیه). d شکل جریانهای پیکهای آندی و کاتدی بر حسب 2/1υ برای سرعت اسکنهای بالاتر از 75 میلیولت بر ثانیه………………………………….50
شکل 4-13: ولتامتری چرخهای Ni/NSAPO/CPE در محلول NaOH 1/0 مولار الف در حضور متانول 01/0مولار و ب غیاب متانول….…………………………..…………………………………….54
شکل 4-14: (a) شکل Ipa بر حسب υ و (b) Ipa برحسب 2/1υ دادههای استخراج شده ولتامتری چرخهای الکترود Ni-SAPO/CPE در حضور متانول با غلظت 005/0 در محلول 1/0 مولار NaOH در سرعت اسکنهای مختلف. © تغییرات log(Ipa) بر حسب log υو (d) شکل تغییرات 2/1υ /Ipa برحسب …υ..56
شکل 4-15: تغییرات نرخ Ipa/Ipc برای Ni-SAPO/CPE نسبت به سرعت اسکن در محلول NaOH 1/0 مولار ▲در غیاب متانول ■ در حضور متانول با غلظت 005/0 مولار…………………………………………….58
شکل 4-16: منحنی تافل و منحنی الحاقی ولتامتری چرخهای الکترود اصلاحی در محلول NaOH 1/0 مولار و در حضور متانول با غلظت 005/0 مولار با سرعت اسکن mV/s 20………………………………………58
شکل4-17: a کرنوآمپرومتری دوپلهای الکترود Ni/NSAPO/CPE در محلول NaOH 1/0 مولار باغلظتهای 0، 0015/0، 003/0، 01/0 مولار متانول (گامهای پتانسیل به ترتیب 7/0 و 3/0 بر حسب Ag/AgCl/KCl ) b منحنی جریان بر حسب زمان در I غیاب متانول و II حضور متانول c وابستگی به از روی دادههای کرنوآمپرومتریc وابستگی جریان به از دادههای کرنوآمپرومتریd وابستگی نرمال شدهی شکلc به غلظت متانول………………………………………………………………………………………..59
شکل 4-18: نمایش رفتار نمایی کرنوآمپرومتری الکترود Ni/NSAPO/CPE در مقابل الکترود CPE….61
شکل 4-19: تصویرSEM a) الکترود خمیر کربن b) الکترود خمیرکربن اصلاح شده با SAPO %25w/w c) الکترود خمیرکربن اصلاح شده با SAPO بعد از لود شدن در محلول نیکل کلراید 1/0مولار…………….63
فهرست جداول
جدول 1-1: مثالهایی از زئولیتهای کوچک، متوسط، بزرگ حفره……………………………………………………….. 5
جدول 2-1: کشفها و پیشرفتهای اصلی در زمینه مواد غربال کنندهی مولکولی در طی این دوره 23
جدول 2-2: سیر تکامل زئولیتهای آلومینوسیلیکاتی از دههی 1950 تا دههی 1970………………. 24
جدول 4-1: جدول محاسبات ks از طریق معادله (5) و شکل b4 برای mV 200<E∆…………………. 52
جدول 4-2: محاسبه مقدار kcat……………………………………………………………………………………………………………………. 60
جدول 4-3: مقایسهی ثابت نرخ کاتالیزوری (kcat) برخی از الکترودهای اصلاحی در اکسیداسیون متانول.61
مروری کلی بر غربال مولکولی سیلیکوآلومینوفسفات[1]
نزدیک به شش دهه است که پیشرفتهای تاریخی در مورد غربالهای مولکولی صورت گرفته است. این پیشرفتها از غربالمولکولیهای آلومینوسیلیکاتی شروع شده و به مواد آمورف سیلیسی با تخلخلهای میکرونی[2]، پلیمورفهای[3] بر پایهی آلومینوفسفات، کامپوزیتهای متالوسیلیکات و متالوفسفات، چارچوبهای هشت وجهی – چهاروجهی، غربالهای مولکولی
فرم در حال بارگذاری ...
[چهارشنبه 1399-08-07] [ 06:54:00 ب.ظ ]
|