فصل 5 : پیاده سازی الگوریتم برروی DSP          
5-1- مقدمه                                      74
5-2- مروری بر پیاده سازی بلادرنگ                          75
5-3- چیپ های DSP                                76
5-3-1- DSP های ممیزثابت                         77
5-3-2- مروری بر DSP های خانواده TMS320          78
5-3-2-1- معرفی سری TMS320C54x               79

پایان نامه

 

5-4- توسعه برنامه بلادرنگ                             81
5-5- اجرای برنامه روی برد توسعه گر C5402 DSK                 82
5-5-1- بکارگیری ابزارهای توسعه نرم افزار                 84
5-5-2- استفاده از نرم افزارCCS                      86
5-5-3- نتایج پیاده سازی                         94
5-6- نتیجه گیری و پیشنهاد                          97
– ضمائم
   – ضمیمه (الف) : دیسکت برنامه های شبیه سازی ممیز ثابت به زبان C و
پیاده سازی کدک به زبان اسمبلی                                                                                         – ضمیمه (ب) : مقایسه برنامه نویسی C و اسمبلی                         98
– مراجع                                         103
  – مقدمه
امروزه در عصر ارتباطات و گسترش روزافزون استفاده از شبكه های تلفن ،موبایل و اینترنت در جهان ومحدودیت پهنای باند در شبكه های مخابراتی ، كدینگ و فشرده سازی صحبت امری اجتناب ناپذیر است . در چند دهه اخیر روشهای كدینگ مختلفی پدیدآمده اند ولی بهترین و پركاربردترین آنها كدك های آنالیزباسنتز هستند كه توسط Atal & Remedeدر سال 1982 معرفی شدند [2] . اخیرا مناسبترین الگوریتم برای كدینگ صحبت با كیفیت خوب در نرخ بیت های پائین و زیر 16 kbps ، روش پیشگویی خطی باتحریك كد (CELP) می باشد كه در سال 1985 توسط Schroeder & Atal معرفی شد [8] و تا كنون چندین استاندارد مهم كدینگ صحبت بر اساس CELP تعریف شده اند .
در سال 1988 CCITT برنامه ای برای استانداردسازی یك كدك 16 kbps با تاخیراندك و      كیفیت بالا در برابر خطاهای كانال آغاز نمود و برای آن كاربردهای زیادی همچون شبكه PSTN ،ISDN ،تلفن تصویری و غیره در نظر گرفت . این كدك در سال 1992 توسط Chen et al.    تحت عنوان LD-CELP معرفی شد[6] و بصورت استاندارد G.728 در آمد[9] و در سال 1994 مشخصات ممیز ثابت این كدك توسط ITU ارائه شد[10] . با توجه به كیفیت بالای این كدك كه در آن صحبت سنتزشده از صحبت اولیه تقریبا غیرقابل تشخیص است  و كاربردهای آن در شبكه های تلفن و اینترنت و ماهواره ای در این گزارش به پیاده سازی این كدك می پردازیم .

یک مطلب دیگر :

 

در فصل اول به معرفی وآنالیز سیگنال صحبت پرداخته می شود و در فصل دوم روش ها و استانداردهای كدینگ بیان می شوند . در فصل سوم كدك LD-CELP را بیشتر بررسی می كنیم و در فصل چهارم شبیه سازی ممیز ثابت الگوریتم به زبان C را بیان می نمائیم. ودر پایان در فصل 5 به نحوه پیاده سازی بلادرنگ كدكG.728 بر روی پردازنده TMS320C5402 می پردازیم.
فصل 1

بررسی و مدل سازی سیگنال صحبت

1-1 –معرفی سیگنال صحبت
صحبت در اثر دمیدن هوا از ریه ها به سمت حنجره و فضای دهان تولید می‏شود. در طول این مسیر در انتهای حنجره، تارهای صوتی[1] قرار دارند. فضای دهان را از بعد از تارهای صوتی ، لوله صوتی[2]  می‏نا مند كه در یك مرد متوسط حدود cm 17 طول دارد . در تولید برخی اصوات تارهای صوتی كاملاً باز هستند و مانعی بر سر راه عبور هوا ایجاد نمی‏كنند كه این اصوات را اصطلاحاً اصوات بی واك [3]  می‏نامند. در دسته دیگر اصوات ، تارهای صوتی مانع خروج طبیعی هوا از حنجره می‏گردند كه این باعث به ارتعاش درآمدن تارها شده و هوا به طور غیر یكنواخت و تقریباً پالس شكل وارد فضای دهان می‏شود. این دسته از اصوات را اصطلاحاً باواك[4]  می‏گویند.
فركانس ارتعاش تارهای صوتی در اصوات باواك را فركانس Pitch و دوره تناوب ارتعاش تارهای صوتی را پریود Pitch می‏نامند. هنگام انتشار امواج هوا در لوله صوتی، طیف فركانس این امواج توسط لوله صوتی شكل می‏گیرد و بسته به شكل لوله ، پدیده تشدید در فركانس های خاصی رخ می‏دهد كه به این فركانس های تشدید فرمنت[5]  می‏گویند.
از آنجا كه شكل لوله صوتی برای تولید اصوات مختلف، متفاوت است پس فرمنت ها برای اصوات گوناگون با هم فرق می‏كنند. با توجه به اینكه صحبت یك فرآیند متغییر با زمان است پس پارامترهای تعریف شده فوق اعم از فرمنت ها و پریود Pitch در طول زمان تغییر می‏كنند به علاوه مد صحبت به طور نامنظمی از باواك به بی واك و بالعكس تغییر می‏كند. لوله صوتی ، همبستگی های زمان-كوتاه  ، در حدود 1 ms ، درون سیگنال صحبت را در بر می‏گیرد. و بخش مهمی از كار كدكننده های صوتی مدل كردن لوله صوتی به صورت یك فیلتر زمان-كوتاه می‏باشد. همان طور كه شكل لوله صوتی نسبتاً آهسته تغییر می‏كند، تابع انتقال این فیلتر مدل كننده هم نیاز به تجدید[6] ، معمولاً در هر 20ms یکبارخواهد داشت.
در شكل (1-1 الف) یك قطعه صحبت باواك كه با فركانس 8KHz نمونه برداری شده است  دیده می‏شود. اصوات باواك دارای تناوب زمان بلند به خاطر پریود Pitch هستند كه نوعاً   بین 2ms تا 20ms می‏باشد. در اینجا پریود Pitch در حدود 8ms یا 64 نمونه است. چگالی طیف توان این قطعه از صحبت در شكل (1-1 ب) دیده می‏شود[3].
اصوات بی واك نتیجه تحریك نویز مانند لوله صوتی هستند و تناوب زمان- بلند اندكی را در بر دارند ، همانگونه كه در شكل های (1-1 ج) و (1-1 د) دیده می‏شود ولی همبستگی زمان كوتاه به خاطر لوله صوتی در آنها هنوز وجود دارد.
بطوركلی سیگنال صحبت  دارای افزونگی[7] زیادی است  كه ناشی از عوامل ذیل هستند:
ـ وابستگی های زمان-كوتاه  : این وابستگی ها عمدتاً به كندی تغییرات صحبت با زمان و ساختار
شكل (1-1) :  مقایسه اصوات باواك و بی واك. (الف)و(ب) : باواك ، (ج)و(د) : بی واك
نسبتاً منظم فرمنت ها مربوط می‏شوند.
ـ وابستگی های زمان- بلند : كه عمدتاً از طبیعت نیمه متناوب اصوات با واك و تغییرات آرام پریود Pitch ناشی می‏شوند.
ـ‌تابع چگالی احتمال صحبت : علیرغم پیچیدگی آماری صحبت می‏توان آن را با توابع چگالی احتمال شناخته شده تقریب زد. شكل لوله صوتی و مد تحریك آن به صورت نسبتاً آرام تغییر می‏كند و بنابراین صحبت را می‏توان به صورت شبه ایستان در دوره های كوتاه زمانی            (حدود 20ms) در نظر گرفت و با یك  فرآیند تصادفی ارگادیك در یك قطعه زمانی كوچك   مدل نمود و طیف مشخصی برای آن در این قطعه زمانی بدست آورد.
علاوه بر افزونگی های فوق عامل مهم دیگری كه كاهش نرخ داده سیگنال صحبت را ممكن          می سازد، طبیعت غیر حساس گوش انسان نسبت به بسیاری از ویژگیهای این سیگنال می‏باشد.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...